Replace Chiller - Building 403 VA Tomah Medical Center, WI Project Number 676-15-104 100% Bid Documents Issued February 26, 2016 VA Tomah Medical Center, Wisconsin # **SPECIFICATIONS** 13605 1st Avenue North, Suite 100, Plymouth, MN 55441 AE Project # 14054 Prepared in association with the following: MEP, Associates LLC. # DEPARTMENT OF VETERANS AFFAIRS VHA MASTER SPECIFICATIONS # TABLE OF CONTENTS Section 00 01 10 | | DIVISION 00 - SPECIAL SECTIONS | DATE | |---------------|---|-------| | 00 01 15 | List of Drawing Sheets | 07-15 | | | | | | | DIVISION 01 - GENERAL REQUIREMENTS | | | | | | | 01 00 00 | General Requirements | 11-15 | | 01 01 10 - IO | | | | 01 33 23 | Shop Drawings, Product Data, and Samples | 15-18 | | 01 35 26 | Safety Requirements | 14-10 | | 01 57 19 | Temporary Environmental Controls | 14-01 | | 01 74 19 | Construction Waste Management | 14-01 | | | DIVISION 02 - EXISTING CONDITIONS | | | 02 41 00 | Demolition | 02-15 | | | DIVISION 03 - CONCRETE | | | 03 30 00 | Cast-in-Place Concrete | 12-15 | | | | | | | DIVISION 04 - MASONRY (NOT USED) | | | | DIVISION 05 - METALS (NOT USED) | | | 05 31 00 | Steel Decking | | | 05 50 00 | Metal Fabrication | 07-14 | | | | | | | DIVISION 06 - WOOD, PLASTIC AND COMPOSITES (NOT USED) | | | | DIVISION 07 - THERMAL AND MOISTURE PROTECTION | | | 07 84 00 | Firestopping | 10-15 | | 07 92 00 | Joint Sealants | 10-15 | | | DIVISION 08 - OPENINGS (NOT USED) | | | | DIVICION OO BINIGHES (NOW HEED) | | | | DIVISION 09 - FINISHES (NOT USED) | | | 09 91 00 | Painting | 01-16 | | | DIVISION 10 - SPECIALTIES (NOT USED) | | | | | | | | DIVISION 11 - EQUIPMENT (NOT USED) | | | | DIVISION 12 - FURNISHINGS (NOT USED) | | |----------|---|-------| | | | | | | DIVISION 13 - SPECIAL CONSTRUCTION (NOT USED) | | | | DIVISION 14 - CONVEYING EQUIPEMENT (NOT USED) | | | | DIVISION 21 - FIRE SUPPRESSION (NOT USED) | | | | DIVISION 22 - PLUMBING (NOT USED) | | | | DIVISION 23 - HEATING, VENTILATING, AND AIR CONDITIONING (HVAC) | | | 23 05 11 | Common Work Results for HVAC | 02-15 | | 23 05 12 | General Motor Requirements for HVAC Equipment | 11-10 | | 23 05 41 | Noise and Vibration Control for HVAC Piping and Equipment | 02-15 | | 23 05 93 | Testing, Adjusting, and Balancing for HVAC | 02-15 | | 23 07 11 | HVAC Insulation | 02-15 | | 23 09 23 | Direct-Digital Control System for HVAC | 09-11 | | 23 21 13 | Hydronic Piping | 09-12 | | 23 25 00 | HVAC Water Treatment | 02-15 | | 23 64 00 | Packaged Water Chillers | 04-11 | | | DIVISION 26 - ELECTRICAL | | | 26 05 11 | Requirements for Electrical Installations | 07-15 | | 26 05 19 | Low-Voltage Electrical Power Conductors and Cables | 07-13 | | 26 05 26 | Grounding and Bonding for Electrical Systems | 12-12 | | 26 05 33 | Raceway and Boxes for Electrical Systems | 05-14 | | 26 27 26 | Wiring Devices | 08-14 | | 26 29 21 | Enclosed Switches and Circuit Breakers | 12-12 | | | DIVISION 32 - SITE IMPROVEMENTS | | | 32 31 13 | Chain Link Fences and Gates | 05-13 | # SECTION 00 01 15 LIST OF DRAWING SHEETS The drawings listed below accompanying this specification form a part of the contract. | Drawing No. | <u>Title</u> | |-------------|---| | | GENERAL | | X-1.0 | COVER SHEET | | | | | | LANDSCAPE DRAWINGS | | L-1.1 | SITE PLAN | | L-1.2 | SITE DETAILS | | | | | | MECHANICAL | | MH001 | MECHANICAL - GENERAL NOTES, SYMBOLS AND ABBREVIATIONS | | MD101 | MECHANICAL DEMOLITION PLAN - MECHANICAL ROOM 1100 | | MP101 | MECHANICAL PIPING PLAN - MECHANICAL ROOM 1100 | | MP105 | MECHANICAL PIPING PLAN - ATTIC | | MS101 | MECHANICAL SITE PLAN - CHILLER AREA | | MP301 | MECHANICAL SECTION VIEW - MECHANICAL ROOM 1100 | | MP501 | MECHANICAL DETAILS | | MP601 | MECHANICAL SCHEDULES | | MP602 | MECHANICAL SCHEDULES | | MI601 | MECHANICAL FLOW DIAGRAM AND CONTROLS | | | | | | ELECTRICAL | | ES101 | ELECTRICAL - GENERAL NOTES, SYMBOLS AND ABBREVIATIONS | | ED101 | ELECTRICAL DEMOLITIONS PLANS - BUILDING 403 | | EP101 | ELECTRICAL PLANS - BUILDING 403 | - - - E N D - - - # SECTION 01 00 00 GENERAL REQUIREMENTS # TABLE OF CONTENTS | 1.1 | INFECTION CONTROL REQUIREMENTS | 1 | |------|---|----| | 1.2 | GENERAL INTENTION | 1 | | 1.3 | STATEMENT OF BID ITEM(S) | 1 | | 1.4 | SPECIFICATIONS AND DRAWINGS FOR CONTRACTOR | 2 | | 1.5 | CONSTRUCTION SECURITY REQUIREMENTS | 2 | | 1.6 | OPERATIONS AND STORAGE AREAS | 5 | | 1.7 | ALTERATIONS | 9 | | 1.8 | DISPOSAL AND RETENTION | 11 | | 1.9 | PROTECTION OF EXISTING VEGETATION, STRUCTURES, EQUIPMENT, UTILITIES, AND IMPROVEMENTS | 13 | | 1.10 |) RESTORATION | 14 | | 1.11 | l physical data | 14 | | 1.12 | 2 PROFESSIONAL SURVEYING SERVICES (Not used) | 14 | | 1.13 | 3 LAYOUT OF WORK | 14 | | 1.14 | 4 AS-BUILT DRAWINGS | 14 | | 1.15 | 5 USE OF ROADWAYS | 15 | | 1.16 | 5 RESIDENT ENGINEER'S FIELD OFFICE (Not used) | 15 | | 1.17 | 7 TEMPORARY USE OF MECHANICAL AND ELECTRICAL EQUIPMENT | 15 | | 1.18 | B TEMPORARY USE OF EXISTING ELEVATORS (Not used) | 17 | | 1.19 | TEMPORARY USE OF NEW ELEVATORS (Not used) | 17 | | 1.20 |) TEMPORARY TOILETS | 17 | | 1.21 | l AVAILABILITY AND USE OF UTILITY SERVICES | 17 | | 1.22 | 2 NEW TELEPHONE EQUIPMENT | 18 | | 1 23 | ን ጥፑርጥር | 12 | | 1.24 INSTRUCTIONS | . 19 | |--|------| | 1.25 GOVERNMENT-FURNISHED PROPERTY | . 21 | | 1.26 RELOCATED ITEMS | . 22 | | 1.27 STORAGE SPACE FOR DEPARTMENT OF VETERANS AFFAIRS EQUIPMENT (Not used) | | | 1.28 CONSTRUCTION SIGN (Not used) | . 22 | | 1.29 SAFETY SIGN | . 22 | | 1.30 PHOTOGRAPHIC DOCUMENTATION (Not used) | . 23 | | 1.31 FINAL ELEVATION Digital Images (Not used) | . 23 | | 1.32 HISTORIC PRESERVATION (Not used) | . 23 | | 1.33 VA TRIRIGA CPMS (Not used) | 23 | | EXHIBIT A - Safety Sign - VA Standard Detail SD010000-02 | 23 | # SECTION 01 00 00 GENERAL REQUIREMENTS ## 1.1 INFECTION CONTROL REQUIREMENTS Refer to section 01 01 10, INFECTION CONTROL for infection control requirements. #### 1.2 GENERAL INTENTION - A. Contractor shall completely prepare site for building operations, including demolition and removal of existing structures, and furnish labor and materials and perform work for Project 676-15-104 Replace Chiller B-403 as required by drawings and specifications. - B. Visits to the site by Bidders may be made only by appointment with the Medical Center Engineering Officer. - C. Offices of Anderson Engineering of Minnesota, LLC and MEP Associates, LLC, as Architect-Engineers, will render certain technical services during construction. Such services shall be considered as advisory to the Government and shall not be construed as expressing or implying a contractual act of the Government without affirmations by Contracting Officer or his duly authorized representative. - D. Before placement and installation of work subject to tests by testing laboratory retained by Department of Veterans Affairs, the Contractor shall notify the Resident Engineer in sufficient time to enable testing laboratory personnel to be present at the site in time for proper taking and testing of specimens and field inspection. Such prior notice shall be not less than three work days unless otherwise designated by the Resident Engineer. - E. All employees of general contractor and subcontractors shall comply with VA security management program and obtain permission of the VA police, be identified by project and employer, and restricted from unauthorized access. # 1.3 STATEMENT OF BID ITEM(S) A. ITEM I, GENERAL CONSTRUCTION: Work includes general construction and alterations as required by the drawings and specifications. They will include but will not limited to: the demolition and complete disposal of existing water cooled chiller and associated condensation units, pumps, piping, electrical feeds and demolition of concrete pads, metal supports as identify on the plans. Construction of new concrete pads, fences, gates and sidewalks. Installation of all new chiller, pumps, tanks, valves, piping, pipe accessories and electrical connections, panels, controls, electrical feeds and other items to as specified on the plans and specifications. # 1.4 SPECIFICATIONS AND DRAWINGS FOR CONTRACTOR - A. AFTER AWARD OF CONTRACT, 3 sets of specifications and drawings will be furnished - B. Additional sets of drawings may be made by the Contractor, at Contractor's expense, from reproducible CD's prints furnished by Issuing Office. Such CD's shall be returned to the Issuing Office immediately after printing is completed. # 1.5 CONSTRUCTION SECURITY REQUIREMENTS #### A. Security Plan: - 1. The security plan defines both physical and administrative security procedures that will remain effective for the entire duration of the project. - 2. The General Contractor is responsible for assuring that all subcontractors working on the project and their employees also comply with these regulations. # B. Security Procedures: 1. General Contractor's employees shall not enter the project site without appropriate badge. They may also be subject to inspection of their personal effects when entering or leaving the project site. # a. Contractor Identification i. On the first day of work, the Contractor shall coordinate with COR/Resident Engineer to acquire the proper security badging. Identification badges shall be worn and visible on your person at all times while on campus. - ii. Contractor shall keep issued identification badge on their person when leaving campus. There will be instances that the VA Police will be verifying ID's at the entrance to the campus and identification will be required. Please have ID's with you. - iii. When project is complete each person will be REQUIRED to turn their identification badge back into the Tomah VA Police Office. - b. Contractor Access and Key Requests
- i. Contractor shall coordinate with COR/Resident Engineer to request any required keys needed to gain access into any required non-public spaces. Request shall be made via e-mail to COR/Resident Engineer. COR/Resident Engineer will coordinate internal process with Contractor for issuance. E-mail requests for keys shall have the following information: - 1) Name of Contractor - 2) Name of Company that Contractor works for - 3) Type(s) of key(s) that is/are being requested - 4) Quantity of each key needed - 2. Before starting work the General Contractor shall give one week's notice to the Contracting Officer so that security arrangements can be provided for the employees. This notice is separate from any notices required for utility shutdown described later in this section. - 3. No photography of VA premises is allowed without written permission of the Contracting Officer. - 4. VA reserves the right to close down or shut down the project site and order General Contractor's employees off the premises in the event of a national emergency. The General Contractor may return to the site only with the written approval of the Contracting Officer. - 5. For working outside the "regular hours" as defined in the contract, The General Contractor shall give 3 day notice to the Contracting Officer so that security arrangements can be provided for the 01 00 00 -3 employees. This notice is separate from any notices required for utility shutdown described later in this section. C. Guards: NOT USED. # D. Key Control: The General Contractor shall provide duplicate keys and lock combinations to the Contracting officers representative (COR) for the purpose of security inspections of every area of project including tool boxes and parked machines and take any emergency action. ## E. Document Control: - Before starting any work, the General Contractor/Sub Contractors shall submit an electronic security memorandum describing the approach to following goals and maintaining confidentiality of "sensitive information". - 2. The General Contractor is responsible for safekeeping of all drawings, project manual and other project information. This information shall be shared only with those with a specific need to accomplish the project. - 3. Certain documents, sketches, videos or photographs and drawings may be marked "Law Enforcement Sensitive" or "Sensitive Unclassified". Secure such information in separate containers and limit the access to only those who will need it for the project. Return the information to the Contracting Officer upon request. - 4. These security documents shall not be removed or transmitted from the project site without the written approval of Contracting Officer. - 5. All paper waste or electronic media such as CD's and diskettes shall be shredded and destroyed in a manner acceptable to the VA. - 6. Notify Contracting Officer and Site Security Officer immediately when there is a loss or compromise of "sensitive information". - 7. All electronic information shall be stored in specified location following VA standards and procedures using an Engineering Document Management Software (EDMS). - a. Security, access and maintenance of all project drawings, both scanned and electronic shall be performed and tracked through the EDMS system. - b. "Sensitive information" including drawings and other documents may be attached to e-mail provided all VA encryption procedures are followed. ## F. Motor Vehicle Restrictions - 1. Vehicle authorization request shall be required for any vehicle entering the site and such request shall be submitted 24 hours before the date and time of access. Access shall be restricted to picking up and dropping off materials and supplies. - 2. A limited number of (2 to 5) permits shall be issued for General Contractor and its employees for parking in designated areas only. # 1.6 OPERATIONS AND STORAGE AREAS - A. The Contractor shall confine all operations (including storage of materials) on Government premises to areas authorized or approved by the Contracting Officer. The Contractor shall hold and save the Government, its officers and agents, free and harmless from liability of any nature occasioned by the Contractor's performance. - B. Temporary buildings (e.g., storage sheds, shops, offices) and utilities may be erected by the Contractor only with the approval of the Contracting Officer and shall be built with labor and materials furnished by the Contractor without expense to the Government. The temporary buildings and utilities shall remain the property of the Contractor and shall be removed by the Contractor at its expense upon completion of the work. With the written consent of the Contracting Officer, the buildings and utilities may be abandoned and need not be removed. - C. The Contractor shall, under regulations prescribed by the Contracting Officer, use only established roadways, or use temporary roadways constructed by the Contractor when and as authorized by the Contracting Officer. When materials are transported in prosecuting the work, vehicles shall not be loaded beyond the loading capacity recommended by the manufacturer of the vehicle or prescribed by any Federal, State, or local law or regulation. When it is necessary to cross curbs or sidewalks, the Contractor shall protect them from damage. The Contractor shall repair or pay for the repair of any damaged curbs, sidewalks, or roads. - D. Working space and space available for storing materials shall be as determined by the Resident Engineer - E. Workmen are subject to rules of Medical Center applicable to their conduct. - F. Execute work so as to interfere as little as possible with normal functioning of Medical Center as a whole, including operations of utility services, fire protection systems and any existing equipment, and with work being done by others. Use of equipment and tools that transmit vibrations and noises through the building structure, are not permitted in buildings that are occupied, during construction, jointly by patients or medical personnel, and Contractor's personnel, except as permitted by Resident Engineer. - 1. Do not store materials and equipment in other than assigned areas. - 2. Schedule delivery of materials and equipment to immediate construction working areas within buildings in use by Department of Veterans Affairs in quantities sufficient for not more than two work days. Provide unobstructed access to Medical Center areas required to remain in operation. - 3. Where access by Medical Center personnel to vacated portions of buildings is not required, storage of Contractor's materials and equipment will be permitted subject to fire and safety requirements. - G. Building No. 403 will be occupied during performance of work, majority of the scheduled work will be performed exterior to the structure and in the existing building basement equipment room. - 1. Contractor shall take all measures and provide all material necessary for protecting existing equipment and property in affected areas of construction against dust and debris, so that equipment and affected areas to be used in the Medical Centers operations will not be hindered. Contractor shall permit access to Department of Veterans Affairs personnel and patients through other construction areas which serve as routes of access to such affected areas and equipment. These routes whether access or egress shall be isolated from the construction area by temporary partitions and have walking surfaces, lighting etc to facilitate patient and staff access. Coordinate alteration work in areas occupied by Department of Veterans Affairs so that Medical Center operations will continue during the construction period. - H. Construction Fence: Before construction operations begin, Contractor shall provide a construction fence 48" tall of orange colored, plastic construction barrier, attached to driven steel posts at no more than 10'-0" O.C., with safety and construction signage attached to fence at no more than 50' O.C., around the construction area indicated on the drawings. Provide secure access as required for Contractor employees, sub-contractors and VA COR/Resident Engineer. Fasten fence fabric to terminal posts with tension bands. Bottom of fences shall extend to 25mm (one inch) above grade. Remove the fence when directed by Resident Engineer. Do not prohibit access to building entrances/exits within the defined construction area. - I. When a building and/or construction site is turned over to Contractor, Contractor shall accept entire responsibility including upkeep and maintenance therefore: - 1. Contractor shall maintain a minimum temperature of 4 degrees C (40 degrees F) at all times, except as otherwise specified. - 2. Contractor shall maintain in operating condition existing fire protection and alarm equipment. In connection with fire alarm equipment, Contractor shall make arrangements for pre-inspection of site with Fire Department or Company (Department of Veterans Affairs or municipal) whichever will be required to respond to an alarm from Contractor's employee or watchman. - J. Utilities Services: Maintain existing utility services for Medical Center at all times. Provide temporary facilities, labor, materials, equipment, connections, and utilities to assure uninterrupted services. Where necessary to cut existing water, steam, gases, sewer or air pipes, or conduits, wires, cables, etc. of utility services or of fire protection systems and communications systems (including telephone), they shall be cut and capped at suitable places where shown; or, in absence of such indication, where directed by Resident Engineer. - 1. No utility service such as water, gas, steam, sewers or electricity, or fire protection systems and communications systems may be interrupted without prior approval of Resident Engineer. Electrical work shall be accomplished with all affected circuits or equipment de-energized. When an electrical outage cannot be accomplished, work on any
energized circuits or equipment shall not commence without a detailed work plan, the Medical Center Director's prior knowledge and written approval. Refer to specification Sections 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, for additional requirements. - 2. Contractor shall submit a request to interrupt any such services to Resident Engineer, in writing, 7 days in advance of proposed interruption. Request shall state reason, date, exact time of, and approximate duration of such interruption. - 3. Contractor will be advised (in writing) of approval of request, or of which other date and/or time such interruption will cause least inconvenience to operations of Medical Center. Interruption time approved by Medical Center may occur at other than Contractor's normal working hours. - 4. Major interruptions of any system must be requested, in writing, at least 15 calendar days prior to the desired time and shall be performed as directed by the Resident Engineer . - 5. In case of a contract construction emergency, service will be interrupted on approval of Resident Engineer. Such approval will be confirmed in writing as soon as practical. - 6. Whenever it is required that a connection fee be paid to a public utility provider for new permanent service to the construction project, for such items as water, sewer, electricity, gas or steam, payment of such fee shall be the responsibility of the Government and not the Contractor. - K. Abandoned Lines: All service lines such as wires, cables, conduits, ducts, pipes and the like, and their hangers or supports, which are to be abandoned but are not required to be entirely removed, shall be sealed, capped or plugged at the main, branch or panel they originate from. The lines shall not be capped in finished areas, but shall be removed and sealed, capped or plugged in ceilings, within furred spaces, in unfinished areas, or within walls or partitions; so that they are completely behind the finished surfaces. - L. To minimize interference of construction activities with flow of Medical Center traffic, comply with the following: - 1. Keep roads, walks and entrances to grounds, to parking and to occupied areas of buildings clear of construction materials, debris and standing construction equipment and vehicles. 2. Method and scheduling of required cutting, altering and removal of existing roads, walks and entrances must be approved by the Resident Engineer. - M. Coordinate the work for this contract with other construction operations as directed by Resident Engineer. This includes the scheduling of traffic and the use of roadways, as specified in Article, USE OF ROADWAYS. # 1.7 ALTERATIONS A. Survey: Before any work is started, the Contractor shall make a thorough survey with the Resident Engineer and a representative of VA Supply Service, of areas of buildings in which alterations occur and areas which are anticipated routes of access, and furnish a report, signed by all three, to the Contracting Officer. This report shall list by rooms and spaces: - Existing condition and types of resilient flooring, doors, windows, walls and other surfaces not required to be altered throughout affected areas of building. - Existence and conditions of items such as plumbing fixtures and accessories, electrical fixtures, equipment, venetian blinds, shades, etc., required by drawings to be either reused or relocated, or both. - 3. Shall note any discrepancies between drawings and existing conditions at site. - 4. Shall designate areas for working space, materials storage and routes of access to areas within buildings where alterations occur and which have been agreed upon by Contractor and Resident Engineer. - B. Any items required by drawings to be either reused or relocated or both, found during this survey to be nonexistent, or in opinion of Resident Engineer and/or Supply Representative, to be in such condition that their use is impossible or impractical, shall be furnished and/or replaced by Contractor with new items in accordance with specifications which will be furnished by Government. Provided the contract work is changed by reason of this subparagraph B, the contract will be modified accordingly, under provisions of clause entitled "DIFFERING SITE CONDITIONS" (FAR 52.236-2) and "CHANGES" (FAR 52.243-4 and VAAR 852.236-88). - C. Re-Survey: Thirty days before expected partial or final inspection date, the Contractor and Resident Engineer together shall make a thorough re-survey of the areas of buildings involved. They shall furnish a report on conditions then existing, of resilient flooring, doors, windows, walls and other surfaces as compared with conditions of same as noted in first condition survey report: - Re-survey report shall also list any damage caused by Contractor to such flooring and other surfaces, despite protection measures; and, will form basis for determining extent of repair work required of Contractor to restore damage caused by Contractor's workmen in executing work of this contract. - D. Protection: Provide the following protective measures: - Wherever existing roof surfaces are disturbed they shall be protected against water infiltration. In case of leaks, they shall be repaired immediately upon discovery. - 2. Temporary protection against damage for portions of existing structures and grounds where work is to be done, materials handled and equipment moved and/or relocated. - 3. Protection of interior of existing structures at all times, from damage, dust and weather inclemency. Wherever work is performed, floor surfaces that are to remain in place shall be adequately protected prior to starting work, and this protection shall be maintained intact until all work in the area is completed. # 1.8 DISPOSAL AND RETENTION - A. Materials and equipment accruing from work removed and from demolition of buildings or structures, or parts thereof, shall be disposed of as follows: - 1. Reserved items which are to remain property of the Government are noted on drawings or in specifications as items to be stored. Items that remain property of the Government shall be removed or dislodged from present locations in such a manner as to prevent damage which would be detrimental to re-installation and reuse. Store such items where directed by Resident Engineer. - 2. Items not reserved shall become property of the Contractor and be removed by Contractor from Medical Center. - 3. Items of portable equipment and furnishings located in rooms and spaces in which work is to be done under this contract shall remain the property of the Government. When rooms and spaces are vacated by the Department of Veterans Affairs during the alteration period, such items which are NOT required by drawings and specifications to be either relocated or reused will be removed by the Government in advance of work to avoid interfering with Contractor's operation. - 4. PCB Transformers and Capacitors: The Contractor shall be responsible for disposal of the Polychlorinated Biphenyl (PCB) transformers and capacitors. The transformers and capacitors shall be taken out of service and handled in accordance with the procedures of the Environmental Protection Agency (EPA) and the Department of Transportation (DOT) as outlined in Code of Federal Regulation (CFR), Titled 40 and 49 respectively. The EPA's Toxic Substance Control Act (TSCA) Compliance Program Policy Nos. 6-PCB-6 and 6-PCB-7 also apply. Upon removal of PCB transformers and capacitors for disposal, the "originator" copy of the Uniform Hazardous Waste Manifest (EPA Form 8700-22), along with the Uniform Hazardous Waste Manifest Continuation Sheet (EPA Form 8700-22A) shall be returned to the Contracting Officer who will annotate the contract file and transmit the Manifest to the Medical Center's Chief. - a. Copies of the following listed CFR titles may be obtained from the Government Printing Office: - 40 CFR 261.....Identification and Listing of Hazardous Waste - 40 CFR 262.....Standards Applicable to Generators of Hazardous Waste - 40 CFR 263.....Standards Applicable to Transporters of Hazardous Waste - 40 CFR 761......PCB Manufacturing, Processing, Distribution in Commerce, and use Prohibitions - 49 CFR 172......Hazardous Material tables and Hazardous Material Communications Regulations - 49 CFR 173......Shippers General Requirements for Shipments and Packaging - 49 CRR 173.....Subpart A General - 49 CFR 173.....Subpart B Preparation of Hazardous Material for Transportation 49 CFR 173.....Subpart J Other Regulated Material; Definitions and Preparation TSCA.....Compliance Program Policy Nos. 6-PCB-6 and 6-PCB-7 # 1.9 PROTECTION OF EXISTING VEGETATION, STRUCTURES, EQUIPMENT, UTILITIES, AND IMPROVEMENTS - A. The Contractor shall preserve and protect all structures, equipment, and vegetation (such as trees, shrubs, and grass) on or adjacent to the work site, which are not to be removed and which do not unreasonably interfere with the work required under this contract. The Contractor shall only remove trees when specifically authorized to do so, and shall avoid damaging vegetation that will remain in place. If any limbs or branches of trees are broken during contract performance, or by the careless operation of equipment, or by workmen, the Contractor shall trim those limbs or branches with a clean cut and paint the cut with a tree-pruning compound as directed by the Contracting Officer. - B. The Contractor shall protect from damage all existing improvements and utilities at or near the work site and on adjacent property of a third party, the locations of which are made known to or should be known by the Contractor. The Contractor shall repair any damage to those facilities, including those that are the property of a third party, resulting from failure to comply with the requirements of this contract or failure to exercise reasonable care in performing the work. If the Contractor fails or refuses to repair the damage promptly, the Contracting Officer may
have the necessary work performed and charge the cost to the Contractor. # (FAR 52.236-9) C. Refer to Section 01 57 19, TEMPORARY ENVIRONMENTAL CONTROLS, for additional requirements on protecting vegetation, soils and the environment. Refer to Articles, "Alterations", "Restoration", and "Operations and Storage Areas" for additional instructions concerning repair of damage to structures and site improvements. #### 1.10 RESTORATION - A. Remove, cut, alter, replace, patch and repair existing work as necessary to install new work. Except as otherwise shown or specified, do not cut, alter or remove any structural work, and do not disturb any ducts, plumbing, steam, gas, or electric work without approval of the Resident Engineer. Existing work to be altered or extended and that is found to be defective in any way, shall be reported to the Resident Engineer before it is disturbed. Materials and workmanship used in restoring work, shall conform in type and quality to that of original existing construction, except as otherwise shown or specified. - B. Upon completion of contract, deliver work complete and undamaged. Existing work (walls, ceilings, partitions, floors, mechanical and electrical work, lawns, paving, roads, walks, etc.) disturbed or removed as a result of performing required new work, shall be patched, repaired, reinstalled, or replaced with new work, and refinished and left in as good condition as existed before commencing work. - C. At Contractor's own expense, Contractor shall immediately restore to service and repair any damage caused by Contractor's workmen to existing piping and conduits, wires, cables, etc., of utility services or of fire protection systems and communications systems (including telephone) which are not scheduled for discontinuance or abandonment. - D. Expense of repairs to such utilities and systems not shown on drawings or locations of which are unknown will be covered by adjustment to contract time and price in accordance with clause entitled "CHANGES" (FAR 52.243-4 and VAAR 852.236-88) and "DIFFERING SITE CONDITIONS" (FAR 52.236-2). # 1.11 PHYSICAL DATA NOT USED - 1.12 PROFESSIONAL SURVEYING SERVICES (NOT USED) - 1.13 LAYOUT OF WORK (NOT USED) # 1.14 AS-BUILT DRAWINGS A. The contractor shall maintain two full size sets of as-built drawings which will be kept current during construction of the project, to include all contract changes, modifications and clarifications. - B. All variations shall be shown in the same general detail as used in the contract drawings. To insure compliance, as-built drawings shall be made available for the Resident Engineer's review, as often as requested. - C. Contractor shall deliver two approved completed sets of as-built drawings in the electronic version (scanned PDF) to the Resident Engineer within 15 calendar days after each completed phase and after the acceptance of the project by the Resident Engineer. - D. Paragraphs A, B, & C shall also apply to all shop drawings. ## 1.15 USE OF ROADWAYS - A. For hauling, use only established public roads and roads on Medical Center property and, when authorized by the Resident Engineer, such temporary roads which are necessary in the performance of contract work. Temporary roads shall be constructed and restoration performed by the Contractor at Contractor's expense. When necessary to cross curbing, sidewalks, or similar construction, they must be protected by well-constructed bridges. - B. When new permanent roads are to be a part of this contract, Contractor may construct them immediately for use to facilitate building operations. These roads may be used by all who have business thereon within zone of building operations. - C. When certain buildings (or parts of certain buildings) are required to be completed in advance of general date of completion, all roads leading thereto must be completed and available for use at time set for completion of such buildings or parts thereof. # 1.16 RESIDENT ENGINEER'S FIELD OFFICE (NOT USED) # 1.17 TEMPORARY USE OF MECHANICAL AND ELECTRICAL EQUIPMENT - A. Use of new installed mechanical and electrical equipment to provide heat, ventilation, plumbing, light and power will be permitted subject to written approval and compliance with the following provisions: - 1. Permission to use each unit or system must be given by Resident Engineer in writing. If the equipment is not installed and maintained in accordance with the written agreement and following provisions, the Resident Engineer will withdraw permission for use of the equipment. - 2. Electrical installations used by the equipment shall be completed in accordance with the drawings and specifications to prevent damage to the equipment and the electrical systems, i.e. transformers, relays, circuit breakers, fuses, conductors, motor controllers and their overload elements shall be properly sized, coordinated and adjusted. Installation of temporary electrical equipment or devices shall be in accordance with NFPA 70, National Electrical Code, (2014 Edition), Article 590, Temporary Installations. Voltage supplied to each item of equipment shall be verified to be correct and it shall be determined that motors are not overloaded. The electrical equipment shall be thoroughly cleaned before using it and again immediately before final inspection including vacuum cleaning and wiping clean interior and exterior surfaces. - 3. Units shall be properly lubricated, balanced, and aligned. Vibrations must be eliminated. - 4. Automatic temperature control systems for preheat coils shall function properly and all safety controls shall function to prevent coil freeze-up damage. - 5. The air filtering system utilized shall be that which is designed for the system when complete, and all filter elements shall be replaced at completion of construction and prior to testing and balancing of system. - 6. All components of heat production and distribution system, metering equipment, condensate returns, and other auxiliary facilities used in temporary service shall be cleaned prior to use; maintained to prevent corrosion internally and externally during use; and cleaned, maintained and inspected prior to acceptance by the Government. - B. Prior to final inspection, the equipment or parts used which show wear and tear beyond normal, shall be replaced with identical replacements, at no additional cost to the Government. - C. This paragraph shall not reduce the requirements of the mechanical and electrical specifications sections. - D. Any damage to the equipment or excessive wear due to prolonged use will be repaired replaced by the contractor at the contractor's expense. ## 1.18 TEMPORARY USE OF EXISTING ELEVATORS (NOT USED) # 1.19 TEMPORARY USE OF NEW ELEVATORS (NOT USED) #### 1.20 TEMPORARY TOILETS A. Contractor may have for use of Contractor's workmen, such toilet accommodations as may be assigned to Contractor by Medical Center. Contractor shall keep such places clean and be responsible for any damage done thereto by Contractor's workmen. Failure to maintain satisfactory condition in toilets will deprive Contractor of the privilege to use such toilets. ## 1.21 AVAILABILITY AND USE OF UTILITY SERVICES - A. The Government shall make all reasonably required amounts of utilities available to the Contractor from existing outlets and supplies, as specified in the contract. The amount to be paid by the Contractor for chargeable electrical services shall be the prevailing rates charged to the Government. The Contractor shall carefully conserve any utilities furnished without charge. - B. The Contractor, at Contractor's expense and in a workmanlike manner, in compliance with code and as satisfactory to the Contracting Officer, shall install and maintain all necessary temporary connections and distribution lines, and all meters required to measure the amount of electricity used for the purpose of determining charges. Before final acceptance of the work by the Government, the Contractor shall remove all the temporary connections, distribution lines, meters, and associated paraphernalia and repair restore the infrastructure as required. - C. Contractor shall install meters at Contractor's expense and furnish the Medical Center a monthly record of the Contractor's usage of electricity as hereinafter specified. - D. Heat: Furnish temporary heat necessary to prevent injury to work and materials through dampness and cold. Use of open salamanders or any temporary heating devices which may be fire hazards or may smoke and damage finished work, will not be permitted. Maintain minimum temperatures as specified for various materials: - E. Electricity (for Construction and Testing): Furnish all temporary electric services. - 1. Obtain electricity by connecting to the Medical Center electrical distribution system. - F. Water (for Construction and Testing): Furnish temporary water service. - Obtain water by connecting to the Medical Center water distribution system. Provide reduced pressure backflow preventer at each connection as per code. Water is available at no cost to the Contractor. - 2. Maintain connections, pipe, fittings and fixtures and conserve water-use so none is wasted. Failure to stop leakage or other wastes will be cause for revocation (at Resident Engineer's discretion) of use of water from Medical Center's system. # 1.22 NEW TELEPHONE EQUIPMENT (Not used) ## **1.23 TESTS** - A. As per specification section 23 05 93 the contractor shall provide a written testing and commissioning plan complete with component level, equipment level, sub-system level and system level breakdowns. The plan will provide a schedule and a written sequence of what will be tested, how and what the expected outcome will be. This document will be submitted for approval prior to commencing work. The contractor shall document the results of the approved plan and submit for approval with the as built documentation. - B. Pre-test mechanical and electrical equipment and systems and
make corrections required for proper operation of such systems before requesting final tests. Final test will not be conducted unless pre-tested. - C. Conduct final tests required in various sections of specifications in presence of an authorized representative of the Contracting Officer. Contractor shall furnish all labor, materials, equipment, instruments, and forms, to conduct and record such tests. - D. Mechanical and electrical systems shall be balanced, controlled and coordinated. A system is defined as the entire system which must be coordinated to work together during normal operation to produce results for which the system is designed. For example, air conditioning supply air is only one part of entire system which provides comfort conditions for a building. Other related components are return air, exhaust air, steam, chilled water, refrigerant, hot water, controls and electricity, etc. Another example of a system which involves several components of different disciplines is a boiler installation. Efficient and acceptable boiler operation depends upon the coordination and proper operation of fuel, combustion air, controls, steam, feedwater, condensate and other related components. - E. All related components as defined above shall be functioning when any system component is tested. Tests shall be completed within a reasonably period of time during which operating and environmental conditions remain reasonably constant and are typical of the design conditions. - F. Individual test result of any component, where required, will only be accepted when submitted with the test results of related components and of the entire system. # 1.24 INSTRUCTIONS - A. Contractor shall furnish Maintenance and Operating manuals (hard copies and electronic) and verbal instructions when required by the various sections of the specifications and as hereinafter specified. - B. Manuals: Maintenance and operating manuals and one compact disc (four hard copies and one electronic copy each) for each separate piece of equipment shall be delivered to the Resident Engineer coincidental with the delivery of the equipment to the job site. Manuals shall be complete, detailed guides for the maintenance and operation of equipment. They shall include complete information necessary for starting, adjusting, maintaining in continuous operation for long periods of time and dismantling and reassembling of the complete units and sub-assembly components. Manuals shall include an index covering all component parts clearly cross-referenced to diagrams and illustrations. Illustrations shall include "exploded" views showing and identifying each separate item. Emphasis shall be placed on the use of special tools and instruments. The function of each piece of equipment, component, accessory and control shall be clearly and thoroughly explained. All necessary precautions for the operation of the equipment and the reason for each precaution shall be clearly set forth. Manuals must reference the exact model, style and size of the piece of equipment and system being furnished. Manuals referencing equipment similar to but of a different model, style, and size than that furnished will not be accepted. C. Instructions: Contractor shall provide qualified, factory-trained manufacturers' representatives to give detailed training to assigned Department of Veterans Affairs personnel in the operation and complete maintenance for each piece of equipment. All such training will be at the job site. These requirements are more specifically detailed in the various technical sections. Instructions for different items of equipment that are component parts of a complete system, shall be given in an integrated, progressive manner. All instructors for every piece of component equipment in a system shall be available until instructions for all items included in the system have been completed. This is to assure proper instruction in the operation of inter-related systems. All instruction periods shall be at such times as scheduled by the Resident Engineer and shall be considered concluded only when the Resident Engineer is satisfied in regard to complete and thorough coverage. The contractor shall submit a course outline with associated material to the COR for review and approval prior to scheduling training to ensure the subject matter covers the expectations of the VA and the contractual requirements. The Department of Veterans Affairs reserves the right to request the removal of, and substitution for, any instructor who, in the opinion of the Resident Engineer, does not demonstrate sufficient qualifications in accordance with requirements for instructors above. # 1.25 GOVERNMENT-FURNISHED PROPERTY - A. The Government shall deliver to the Contractor, the Government-furnished property shown on the drawings. - B. Equipment furnished by Government to be installed by Contractor will be furnished to Contractor at the Medical Center. - C. Storage space for equipment will be provided by the Government and the Contractor shall be prepared to unload and store such equipment therein upon its receipt at the Medical Center. - D. Notify Contracting Officer in writing, 60 days in advance, of date on which Contractor will be prepared to receive equipment furnished by Government. Arrangements will then be made by the Government for delivery of equipment. - 1. Immediately upon delivery of equipment, Contractor shall arrange for a joint inspection thereof with a representative of the Government. At such time the Contractor shall acknowledge receipt of equipment described, make notations, and immediately furnish the Government representative with a written statement as to its condition or shortages. - 2. Contractor thereafter is responsible for such equipment until such time as acceptance of contract work is made by the Government. - E. Equipment furnished by the Government will be delivered in a partially assembled (knock down) condition in accordance with existing standard commercial practices, complete with all fittings, fastenings, and appliances necessary for connections to respective services installed under contract. All fittings and appliances (i.e., couplings, ells, tees, nipples, piping, conduits, cables, and the like) necessary to make the connection between the Government furnished equipment item and the utility stub-up shall be furnished and installed by the contractor at no additional cost to the Government. - F. Completely assemble and install the Government furnished equipment in place ready for proper operation in accordance with specifications and drawings. G. Furnish supervision of installation of equipment at construction site by qualified factory trained technicians regularly employed by the equipment manufacturer. ## 1.26 RELOCATED ITEMS - A. Contractor shall disconnect, dismantle as necessary, remove and reinstall in new location, all existing equipment and items indicated by symbol "R" or otherwise shown to be relocated by the Contractor. - B. Perform relocation of such equipment or items at such times and in such a manner as directed by the Resident Engineer. - C. Suitably cap existing service lines, such as steam, condensate return, water, drain, gas, air, vacuum and/or electrical, at the main whenever such lines are disconnected from equipment to be relocated. Remove abandoned lines in finished areas and cap as specified herein before under paragraph "Abandoned Lines". - D. Provide all mechanical and electrical service connections, fittings, fastenings and any other materials necessary for assembly and installation of relocated equipment; and leave such equipment in proper operating condition. - E. All service lines such as noted above for relocated equipment shall be in place at point of relocation ready for use before any existing equipment is disconnected. Make relocated existing equipment ready for operation or use immediately after reinstallation. # 1.27 STORAGE SPACE FOR DEPARTMENT OF VETERANS AFFAIRS EQUIPMENT (NOT USED) ## 1.28 CONSTRUCTION SIGN (NOT USED) # 1.29 SAFETY SIGN - A. Provide Safety Sign where directed by COR/Resident Engineer. Face of sign shall be 19 mm (3/4 inch) thick exterior grade plywood. Provide three 100 mm by 100 mm (four by four inch) posts extending full height of sign and 900 mm (three feet) into ground. Set bottom of sign level at 1200 mm (four feet) above ground. - B. Paint all surfaces of Safety Sign and posts with one prime coat and two coats of white gloss paint. Letters and design shall be painted with gloss paint of colors noted. - C. Maintain sign and remove it when directed by COR/Resident Engineer. - D. Standard Detail Drawing Number SD010000-02(Found on VA TIL) of safety sign showing required legend and other characteristics of sign (Exhibit A) is attached hereto and is made a part of this specification. - E. Post the number of accident free days on a daily basis. - 1.30 PHOTOGRAPHIC DOCUMENTATION (NOT USED) - 1.31 FINAL ELEVATION DIGITAL IMAGES (NOT USED) - 1.32 HISTORIC PRESERVATION (NOT USED) - 1.32 VA TRIRIGA CPMS (NOT USED) - - - E N D - - - #### EXHIBIT A # SECTION 01 01 10 - IC INFECTION CONTROL #### DESCRIPTION - A. Infection Control is critical in all medical center facilities. Interior construction activities causing disturbance of existing dust, or creating new dust, must be conducted within ventilation-controlled areas that minimize the flow of airborne particles into patient areas. - B. An AHA associated with infection control will be performed by VA personnel in accordance with FGI Guidelines (i.e. Infection Control Risk Assessment (ICRA)). Reference Exhibits A & B at the end of this Section. The ICRA procedure in Section 01 01 10 - IC INFECTION CONTROL, will be utilized. Risk classifications of Class II or lower will require approval by the COR or Government Designated Authority before beginning any construction work. Risk classifications of Class III or higher will require a permit before beginning any
construction work. Infection Control permits will be issued/coordinated by the Resident Engineer. The Infection Control Permits shall be posted outside the appropriate construction area. More than one permit may be issued for a construction project if the work is located in separate areas requiring separate classes. The primary project scope area for this project are as follows: NON-PATIENT AREAS: Construction Project Type - C, Patient Risk Group - LOW, Class of Precautions - I & II. Work outside the primary project scope area may vary. The required infection control precautions with each class are stated in this Section. Barriers shall be erected as required based upon classification. - C. This section specifies the control of environmental infection control and risk assessment that the Contractor must consider for construction & renovation projects in the medical facility. It includes Precautionary management of, Inspections and Non-invasive activities, small scale, short duration activities that create minimal dust. Major demolition and construction projects that generate a moderate to high levels of dust. Movement of materials and equipment, and resources that are encountered or generated by the Contractor. The Contractor is obligated to consider the specified control measures with the costs included within the various contract items of work. An *Infection Control Risk Assessment Matrix of Precautions* for construction and renovation for activities follows. 01 01 10 - 1 | TYPE A | Inspection and Non-Invasive Activities. Includes, but is not limited to: removal of ceiling tiles for visual inspection limited to 1 tile per 50 square feet painting (but not sanding) wall covering, electrical trim work, minor plumbing, and activities which do not generate dust or require cutting of walls or access to ceilings other than for visual inspection. | |--------|---| | ТҮРЕ В | Small scale, short duration activities which create minimal dust Includes, but is not limited to: installation of telephone and computer cabling access to chase spaces cutting of walls or ceiling where dust migration can be controlled. | | ТҮРЕ С | Work that generates a moderate to high level of dust or requires demolition or removal of any fixed building components or assemblies Includes, but is not limited to: sanding of walls for painting or wall covering removal of floor coverings, ceiling tiles and casework new wall construction minor duct work or electrical work above ceilings major cabling activities any activity that cannot be completed within a single work shift. | | TYPE D | Major demolition and construction projects Includes, but is not limited to: activities which require consecutive work shifts requires heavy demolition or removal of a complete cabling system new construction. | - B. Infection Control Risk and damage is defined as the presence of chemical, physical, or biological elements or agents which: - 1. Adversely effect human health or welfare, - 2. Unfavorably alter ecological balances of importance to human life, Using the following table, *identify the* Patient Risk Groups that will be affected. If more than one risk group will be affected, select the higher risk group: | Low Risk | Medium Risk | High Risk | Highest Risk | |----------------|--|--|---| | • Office areas | Cardiology Echocardiography Endoscopy Nuclear Medicine Physical Therapy Radiology/MRI Respiratory Therapy | CCU Emergency Room Labor & Delivery Laboratories (specimen) Newborn Nursery Outpatient Surgery Pediatrics Pharmacy Post Anesthesia Care Unit Surgical Units | Any area caring for immunocompromised patients Burn Unit Cardiac Cath Lab Central Sterile Supply Intensive Care Units Medical Unit Negative pressure isolation rooms Oncology Operating rooms including C-section rooms | C. Match the **Patient Risk Group** with **Construction Project Type** on the following matrix to determine the level of **infection control** activities required. Patient Risk Group (Low, Medium, High, Highest) with the planned... Construction Project Type (A, B, C, D) on the following matrix, to find the... Class of Precautions (I, II, III or IV) or level of infection control activities required. 1) Infection Control approval will be required when the Construction Activity and Risk Level indicate that **Class III** or **Class IV** control procedures are necessary. Contact the VA Project engineer and the infection control officer before proceeding. # IC Matrix - Class of Precautions: Construction Project by Patient Risk **Construction Project Type** | Patient Risk Group | TYPE A | TYPE B | TYPE C | TYPE D | |---------------------------|--------|--------|--------|--------| | LOW Risk Group | I | Ш | П | III/IV | | MEDIUM Risk Group | I | Ш | III | IV | | HIGH Risk Group | I | Ш | III/IV | ΙV | | HIGHEST Risk Group | П | III/IV | III/IV | ĪΫ | $\ensuremath{\mathbb{D}}$. Description of Required Infection Control Precautions by Class # **During Construction Project** # **Upon Completion** # of Project | CLASS I | 1. 2. 3. 4. | Execute work by methods to minimize raising dust from construction operations. Immediately replace a ceiling tile displaced for visual inspection. Negative pressure rooms are to be entered while unoccupied. Contractor will contact NM prior to entry to ensure that the room is not in use. Contractor will wear appropriate Personal Protection Equipment when entering patient | Clean work upon completion of task: major cleaning will be completed by EMS/SPS. Maintenance and contractor should remove any obvious debris generated by their work. | |-----------|----------------------|---|--| | | 1. | rooms that require Transmission Based Precautions as outlined on the sign outside the patient's room. Provide active means to prevent airborne dust from dispersing into atmosphere. Water mist work surfaces to control dust while | Wipe work surfaces with disinfectant. Contain construction waste before transport in tightly covered containers. | | CLASS II | 3.
4.
5.
6. | cutting. Seal unused doors with duct tape. Block off and seal air vents. Place dust mat at entrance and exit of work area Remove or isolate HVAC system in areas where work is being performed. Follow VHA Directive 1061 when installing new piping and distribution system components by flushing debris and disinfecting new piping and distribution system components prior to placing the system in service. | 3. Wet mop and/or vacuum with HEPA filtered vacuum before leaving work area. 4. Remove isolation of HVAC system in areas where work is being performed. | | CLASS III | | *Remove or Isolate HVAC system in area where work is being done to prevent contamination of duct system. Complete all critical barriers i.e. sheetrock, plywood, plastic, to seal area from non-work area or implement control cube method (cart with plastic covering and sealed connection to work site with HEPA vacuum for vacuuming prior to exit) before construction begins. Maintain negative air pressure within work site utilizing HEPA equipped air filtration units. Contain construction waste before transport in tightly covered containers. Cover transport receptacles or
carts. Tape covering unless solid lid. Use window for negative HEPA air exhaust when ressible. Obtain V.A, resident engineer approval exhausting into existing exhaust ductwork. | Do not remove barriers from work area until completed project is inspected by the owner's Safety Department and Infection Control Department and thoroughly cleaned by the owner's Environmental Services Department. Remove barrier materials carefully to minimize spreading of dirt and debris associated with construction. Vacuum work area with HEPA filtered vacuums. Wet mop area with disinfectant. Remove isolation of HVAC system in areas where work is being performed. | - 1. Isolate HVAC system in area where work is being done to prevent contamination of duct system. - Complete all critical barriers i.e. sheetrock, plywood, plastic, to seal area from non-work area or implement control cube method (cart with plastic covering and sealed connection to work site with HEPA vacuum for vacuuming prior to exit) before construction begins. - 3. Maintain negative air pressure within work site utilizing HEPA equipped air filtration units. - 4. Seal holes, pipes, conduits, and punctures appropriately. - 5. Construct anteroom and require all personnel to pass through this room so they can be vacuumed using a HEPA vacuum cleaner before leaving work site or they can wear cloth or paper coveralls that are removed each time they leave the work site. - 6. All personnel entering work site are required to wear shoe covers. Shoe covers must be changed each time the worker exits the work area. - 7. Do not remove barriers from work area until completed project is inspected by the owner's Safety Department and Infection Control Department and thoroughly cleaned by the owner's Environmental Services Department. - 1. Remove barrier material carefully to minimize spreading of dirt and debris associated with construction. - 2. Contain construction waste before transport in tightly covered containers. - 3. Cover transport receptacles or carts. Tape covering unless solid lid - 4. Vacuum work area with HEPA filtered vacuums. - 5. Wet mop area with disinfectant. - 6. Remove isolation of HVAC system in areas where work is being performed. E. Identify the area surrounding the project area, assessing potential impact. Step 4. Identify the areas surrounding the project area, assessing potential impact | Unit Below | Unit Above | Lateral | Lateral | Behind | Front | |------------|--------------------|------------|------------|------------|------------| | | | | | | | | Risk Group | Risk <u>Gr</u> oup | Risk Group | Risk Group | Risk Group | Risk Group | - Step 5. Identify specific site of activity eg, patient rooms, medication room, etc. - Step 6. Identify issues related to: ventilation, plumbing, electrical in terms of the occurrence of probable outages. - Step 7. Identify containment measures, using prior assessment. What types of barriers? (Eg, solids wall barriers); Will HEPA filtration be required? (Note: Renovation/construction area shall be isolated from the occupied areas during construction and shall be negative with respect to surrounding areas) - Step 8. Consider potential risk of water damage. Is there a risk due to compromising structural integrity? (eg, wall, ceiling, roof) - Step 9. Work hours: Can or will the work be done during non-patient care hours? - Step 10. Do plans allow for adequate number of isolation/negative airflow rooms? - Step 11. Do the plans allow for the required number & type of handwashing sinks? - Step 12. Does the infection control staff agree with the minimum number of sinks for this project? (Verify against AIA Guidelines for types and area) - Step 13. Does the infection control staff agree with the plans relative to clean and soiled utility rooms? - Step 14. Plan to discuss the following containment issues with the project team. Eg, traffic flow, housekeeping, debris removal (how and when) Appendix: Identify and communicate the responsibility for project monitoring that includes infection control concerns and risks. The ICRA may be modified throughout the project Revisions must be communicated to the Project Manager. Steps 1-3 Adapted with permission V Kennedy, B Barnard, St Luke Episcopal Hospital, Houston TX; C Fine, CA Steps 4-14 Adapted with permission Fairview University Medical Center, Minneapolis MN by ECSI Inc 2001 Forms modified and provided courtesy of 3 Bartley, ECSI Inc 2002 | | | Infection Control Constru | ıcti | on P | ermit | | |------------|------------|--|-----------------------|--|--|--| | | | | | | Permit No: | | | Loca | tion o | of Construction: | | Pı | roject Start Date: | | | Proje | ect Co | oordinator: | | E | stimated Duration: | | | | | r <u>Performing</u> Work | | Pe | ermit Expiration Date: | | | | rviso | | | | Celphone: | | | YES | NO | CONSTRU <u>CTION ACTIVITY</u> | VE | S NO | INFECTION CONTROL, RISK GROUP | | | 1123 | NO | TYPE A: Inspection, non-invasive activity | 112 | 3 110 | GROUP 1: Low Risk | | | | | TYPE B: Small scale, short duration, | | | GROUP 1: Low Risk GROUP 2: Medium Risk | | | | | moderate to high levels | | | GROUP 2. Medium Risk | | | | | TYPE C: Activity generates moderate to high levels of | | | GROUP 3: Medium/high Risk | | | | | dust, re Lures eater 1 work shift for completion | | | | | | | | TYPE. D: Major duration arid construction activities | | | GROUP 4: Highest Risk | | | 07.100 | | Requiring consecutive work shifts | L | | | | | CLASS | 5 1 | Execute work by methods to minimize raising dust from construction operations. | 3. | Mino | r Demolition for Remodeling | | | | | Immediately replace any ceiling tile displaced for visual | | | | | | OT 100 | | inspection. | | - | | | | CLASS | 5 11 | Provides active means to prevent air-bone dust from dispersing into atmosphere | 6. | | in construction waste before transport in tightly ed containers. | | | | | Water mist work surfaces to control dust while cutting. | 7. | | nop and/or vacuum with HEPA filtered vacuum | | | | | 3. Seal unused doors with duct tape. | _ | before | e leaving work area. | | | | | Block off and seal air vents. Wipe surfaces with disinfectant. | S.
9. | | dust mat at entrance and exit of work area. ove or isolate HVAC system in areas where work | | | | | 5. wipe surfaces with disinfectant. | ٦. | | ng performed. | | | | | Obtain infection control pennit before construction begins. | 6. | | um work with HEPA filtered vacuums. | | | CLASS | 3 111 | 2. Isolate HVAC system in area where work is being done to | 7. | | nop with disinfectant | | | | | prevent contamination of the duct system. 3. Complete all critical barriers or implement control cube | S. | S. Remove barrier materials carefully to minimize spreading of dirt and debris associated with | | | | | | method before construction begins. | | const | ruction. | | | D | | AMELIA I I I I I I I I I I I I I I I I I I | 9. | | in construction waste before transport in | | | Da
Init | | Maintain negative air pressure within work site utilizing HEPA equipped air filtration units. | 10. | | y covered containers. r transport receptacles or carts. Tape covering. | | | 1111(| .141 | S. Do not remove barriers from work area until complete | 11. | | | | | | | project is thoroughly cleaned by Env. Services Dept. | | | ng performed/ | | | Class I | 5 7 | Obtain infection control permit before construction begins. Isolate HVAC= system in area where work is being done to | 7. | | ersonnel entering work site are required to wear covers | | | Class I | v | prevent contamination of duct system. | S. | | ot remove barriers from work area until completed | | | | | 3. Complete all critical barriers or implement control cube | | | ct is thoroughly cleaned by the Environmental | | | Date | | method before construction begins. 4. Maintain negative air pressure within work site utilizing | 9. | | te Dept.
In work area with HEPA filtered vacuums. | | | 154 | | HEPA equipped air filtration units. | | | nop with disinfectant. | | | Init | ial | 5. Seal holes, pipes, conduits, and punctures appropriately. | 11. | | ove barrier materials carefully to minimize | | | | | 6. Construct anteroom and require all personnel to pass
through this room so they can be vacuumed using a HEPA | | | ding of dirt and debris associated with ruction. | | | | | vacuum cleaner before leaving work site or they can wear | 12. | | in construction waste before transport in tightly | | | | | cloth or paper coveralls that are removed each time they | 10 | | ed containers. | | | | | leave the work site. | 13.
14. | | r transport receptacles or carts. Tape covering,
ove or isolate HVAC system in areas where is | | | | | | | bein o | lone. | | | Additio | onal Rec | quirements: | | | | | | | | | | | | | | Date In | nitials | | Init | ials are | Exceptions/Additions to this permit Date noted b attached memoranda | | | | Reques | t By: | Permit Authorized By: | | | | | | 1 - | • | | | • | | | Date: | | | Date: | | | | Steps 1-3 Adapted with permission V Kennedy, B Barnard, St Luke Episcopal Hospital, Houston TX; C Fine, CA Steps 4-14 Adapted with permission Fairview University Medical Center, Minneapolis MN Forms modified and provided courtesy of I Bartley, ECSI Inc 2002 - F. Apply Life Safety and standards (APIC) and the following criteria would need to be assured in order to maintain the supply air side open during Class 4 construction activity: - The air supply is 100% fresh air <u>and</u> the site and adjacent areas can be kept under negative pressure at all times. - There is no re circulated air in this section - · There is
no duct work involved in this section of the demolition - The site can never be positive to the adjacent areas (i.e. keep the negative air machines on at all times or for 1-2 hours post site work until the negative action can be maintained. - A log is maintained to document that the negative pressure is checked and has been maintained during those hours when the negative air machines are turned off. (An alarmed device is recommended for this purpose and should be maintained and monitored by the construction personnel). # PART 2 - PRODUCTS, MATERIALS AND EQUIPMENT ## 2.1 MATERIALS AND EQUIPMENT GENERAL REQUIREMENTS - A. All materials shall be delivered in their original package, container or bundle bearing the name of the manufacturer and the brand name (where applicable). When transporting new materials & equipment though the hospital use 4 mil Poly sheeting encasing materials, tools and equipment or use a totally enclosed cart. - B. Store all materials subject to damage off the ground, away from wet or damp surfaces and under cover sufficient enough to prevent damage or contamination. Flammable materials cannot be stored inside buildings. Replacement materials shall be stored outside of the regulated/work area until construction is completed. - C. The Contractor shall not block or hinder use of buildings by patients, staff, and visitors to the VA in partially occupied buildings by placing materials/equipment in any unauthorized place. 01 01 10 - 8 - D. The Competent Person shall inspect for damaged, deteriorating or previously used materials. Such materials shall not be used and shall be removed from the worksite and disposed of properly. - E. Demolition materials must be transported in totally enclosed containers. - 1) Demolition on above ground floors may use a window debris chute to convey materials to an enclosed dumpster that provides dust and noise control. The contractor is responsible to maintain the original appearance of the building fascia. # 2.1.2 NEGATIVE PRESSURE FILTRATION SYSTEM The Contractor shall provide enough negative air machines to completely exchange the regulated area air volume 4 actual times per hour. The Competent Person shall determine the number of units needed for each regulated area by dividing the cubic feet in the regulated area by 15 and then dividing that result by the actual cubic feet per minute (cfm) for each unit to determine the number of units needed to effect 4 air changes per hour. Provide a standby unit in the event of machine failure and/or emergency in an adjacent area. # 2.1.3 DESIGN AND LAYOUT Before start of work submit the design and layout of the regulated area and the negative air machines, type of construction barriers to be used. The submittal shall indicate the number of, location of and size of negative air machines and exhaust route & location of the windows to be used. The point(s) of exhaust, air flow within the regulated area, anticipated negative pressure differential, and supporting calculations for sizing shall be provided. In addition, submit the following: - 1. Manufacturer's information on the negative air machine(s). - 2. Method of supplying power to the units and designation/location of the panels. - 3. Description of testing method(s) for correct air volume and pressure differential. Provide manufacturer's product data on the pressure differential measuring device used. - 4. If auxiliary power supply is to be provided for the negative air machines, provide a schematic diagram of the power supply and manufacturer's data on the generator and switch. - 5. Location of isolation negative air pressure monitor. #### 2.1.4 NEGATIVE AIR MACHINES - A. Negative Air Machine Cabinet: The cabinet shall be constructed of steel or other durable material capable of withstanding potential damage from rough handling and transportation. The width of the cabinet shall be less than 30" in order to fit in standard doorways. The cabinet must be factory sealed to prevent dust from being released during use, transport, or maintenance. Any access to and replacement of filters shall be from the inlet end. The unit must be on casters or wheels. - B. Negative Air Machine Fan: The rating capacity of the fan must the air moving capacity under actual operating conditions. Manufacturer's typically use "free-air" (no resistance) conditions when rating fans. The fan must be a centrifugal type fan. - B. Negative Air Machine Final Filter: - When exhausting directly to the outside from a window or penetration the filter shall be a minimum MERV 8 pleated filter media completely sealed on all edges within a structurally rigid frame. - 2) When exhausting to a exhaust duct: the final filter shall be a HEPA filter. The filter media must be completely sealed on all edges within a structurally rigid frame. The filter shall align with a continuous flexible gasket material in the negative air machine housing to form an air tight seal. Each HEPA filter shall be individually tested and certified by the manufacturer to have an efficiency of not less than 99.97% when challenged with 0.3 μm dioctylphthalate (DOP) particles. Testing shall have been done in accordance with Military Standard MIL- STD-282 and Army Instruction Manual 136-300-175A. Each filter must bear a UL586 label to indicate ability to perform under specified conditions. Each filter shall be marked with the name of the manufacturer, serial number, air flow rating, efficiency and resistance, and the direction of test air flow. - D. Negative Air Machine Pre-filters: The pre-filters, which protect the final HEPA filter by removing larger particles, are required to prolong the operating life of the HEPA filter. Two stages of pre-filtration are required. A first stage pre-filter shall be a low efficiency type for particles 10 μm or larger. A second stage pre-filter shall have a medium efficiency effective for particles down to 5 μm or larger. Pre-filters shall be installed either on or in the intake grid of the unit and held in place with a special housing or clamps. - F. Negative Air Machine Safety and Warning Devices: An electrical/ mechanical lockout must be provide to prevent the fan from being operated without a HEPA filter. Units must be equipped with an automatic shutdown device to stop the fan in the event of a rupture in the HEPA filter or blockage in the discharge of the fan. Warning lights are required to indicate normal operation; too high a pressure drop across filters; or too low of a pressure drop across filters. - G. Negative Air Machine Electrical: All electrical components shall be approved by the National Electrical Manufacturer's Association (NEMA) and Underwriter's Laboratories (UL). Each unit must be provided with overload protection and the motor, fan, fan housing, and cabinet must be grounded. ## 2.1.5 PRESSURE DIFFERENTIAL The fully operational negative air system within the regulated area shall continuously maintain a pressure differential of - 0.02" water column. Before any disturbance of any material or building system, this shall be demonstrated to the VA by use of a pressure differential meter as required by OSHA 29 CFR 1926.1101(e)(5)(i). Provide where shown TriaTek Isolation monitors during Class 3 or Class 4 Construction Operations. Extend JCI Pegasys System for MIRL construction doors. Provide electronic locks as required per construction door. The Competent Person shall be responsible for providing and maintaining the negative pressure and air changes as required by OSHA and this specification. #### 2.1.9 TESTING THE SYSTEM The negative pressure system must be tested before any disturbedance. After the regulated area has been completely prepared, the decontamination units set up, and the negative air machines installed, start the units up one at a time. Demonstrate and document the operation and testing of the negative pressure system to the VA using smoke tubes and a negative pressure gauge. Testing must also be done at the start of each work shift. ## 2.1.10 DEMONSTRATION OF THE NEGATIVE AIR PRESSURE SYSTEM The demonstration of the operation of the negative pressure system to the VA shall include, but not be limited to, the following: - A. Contractor to install Triatek (Web site www.Ttk.com) negative air isolation monitoring stations at the sites access doors or at opposite sides of the construction area check with resident engineer for # of units and location. - B. Curtains of the decontamination units move in toward regulated area. - D. Use smoke tubes to demonstrate air is moving air across all areas in which work is to be done. - E. Plastic barriers and sheeting move lightly in toward the regulated area. ## 2.1.11 USE OF SYSTEM DURING CONSTRUCTION OPERATIONS - A. Start units before beginning any disturbance occurs. After work begins, the units shall run continuously, maintaining 4 actual air changes per hour at a negative pressure differential of 5.0 Pa (-0.02") water column, for the duration of the work until a final visual clearance and final air clearance has been completed. - B. The negative air machines shall not be shut down for the duration of the project unless authorized by the VA, in writing. - C. Construction work shall begin at a location closest from the units and proceed away from them. If an electric failure occurs, the Competent Person shall stop all work and not resume until power is restored and all units necessary are operating properly again. D. The negative air machines shall continue to run after all work is completed and until a final visual clearance and a final air, clearance has been completed for that regulated area. #### 2.2 CONTAINMENT BARRIERS AND COVERINGS IN THE REGULATED AREA #### 2.2.1 GENERAL A. Seal off the perimeter to the regulated area to completely isolate the regulated area from adjacent spaces. All surfaces in the regulated area must be covered to prevent contamination and to facilitate clean-up. Should adjacent areas become
contaminated, immediately stop work and clean up the contamination at no additional cost to the Government. #### 2.2.3 CONTROLLING ACCESS TO THE REGULATED AREA A. Access to the regulated area is allowed only through the personnel decontamination facility (PDF). All other means of access shall be eliminated and OSHA warning signs posted as required by OSHA. If the regulated area is adjacent to or within view of an occupied area, provide a visual barrier of opaque fire retardant poly sheeting at least 4 mils thick to prevent building occupant observation. If the adjacent area is accessible to the public, the barrier must be solid and capable of withstanding the negative pressure. ## 2.2.4 CRITICAL BARRIERS A. Completely separate the regulated area from adjacent areas using fire retardant poly at least 4 mils thick and duct tape. Individually seal with two layers of 6 mil poly and duct tape all HVAC openings, cap off exhaust into the regulated area. Individually seal all lighting fixtures, clocks, doors, windows, convectors, speakers, or any other objects in the regulated area. Use care with hot/warm surfaces see fig 1. # 2.2.5 PRIMARY BARRIERS - A. Temporary Construction Partitions: - 1. Install and maintain temporary construction partitions to provide separations between construction areas and adjoining areas. Construct partitions of gypsum board or treated plywood (flame spread rating of 25 or less in accordance with ASTM E84) on one side of wood or metal steel studs. Seal with one layers of 4 mil poly for a vapor barrier under gypsum or 01 01 10 - 13 plywood. Extend the Poly through suspended ceilings to floor slab or roof. Seal penetrations at door openings, install tight-fitting VA supplied construction doors with self-closing devices see fig. 2 for barrier construction. ## 2.2.6 CONTRACTOR SPILL RESPONSE KIT - A. The kit should include the following: - 1. Shop Vacuum. - 2. Multi-Purpose Spill Control Sorbents to absorb non-aggressive liquids up to 30 gallons. - 3. Sorbents pillows. - 4. Pipe leak clamps for copper & steel pipe in sufficient size range and quantity base on project piping scope. - 5. Bucket & mop and water resistant duct tape. Fig. 2 ## EXHIBIT A - ICRA Non-Patient Areas ## VAMC TOMAH Infection Control Risk Assessment (ICRA) Step 1. Use the following chart to identify the Type of Construction Project Activity (Type A-D) | Type A | Inspect and Non-invasive Activities: Includes, but not limited to: Removal of ceiling tiles for visual inspection limited to 1 tile per 50 square feet Painting (but not sanding) Wall covering, electrical trim work, minor plumbing, and activities which do not generate dust or require cutting of walls or access to ceilings other than for visual inspection | |--------|--| | Туре В | Small scale, short duration activities which create minimal dust: Includes, but not limited to: Installation of telephone and computer cabling Access to chase spaces Cutting of walls or ceiling where dust migration can be controlled | | Type C | Work that generates a moderate to high level of dust or requires demolition or removal of any fixed building components or assemblies: Includes, but not limited to: Sanding of walls for painting or wall covering Removal of floor covering, ceiling tiles and casework New wall construction Minor duct work or electrical work above ceilings Major cabling activities Any activity which cannot be completed within a single work shift | | Type D | Major demolition and construction projects: Includes, but not limited to: Activities that require consecutive work shifts. Requires heavy demolition or removal of a complete cabling system. New construction | Is it likely the Contractor's staff will be placed at risk for infection with tuberculosis? No Is it likely there will be physical disruption of the water system/lines during activity? No Selected Type of Construction: _C__ Notes: $\begin{tabular}{ll} \textbf{Step 2.} & \textbf{Using the following table, identify the Patient Risk Group that will be affected.} \end{tabular}$ more than one group is affected, select the higher risk group. | Low Risk | Medium Risk | High Risk | Highest Risk | |--------------|---|--|--| | Office areas | Cardiology
Echocardiography
Endoscopy
Nuclear Medicine
Physical Therapy
Radiology/MRI
Respiratory Therapy | CCU Emergency Room Laboratories Outpatient Surgery Pharmacy Post Anesthesia Care Unit Surgical Units | Any area caring for immunocompromised patients
Cardiac Cath Lab
Central Supply
Intensive Care Units
Medical Units
Negative airflow rooms
Oncology
Operating Rooms | Select Patient Risk Group: Low Notes: **Step 3.** Match the Patient Risk Group with the planned Construction Project Type (A, B, C, D) on the following matrix, to find the Class of Precautions (I, II, III, and IV) or level of infection control activities required. | Patient Risk Group | Type A | Type B | Type C | Type D | | |--------------------|--------|--------|--------|--------|--| | Low risk | T | II | II | III/IV | | | Medium risk | 1 | II | III | IV | | | High risk | I | II | III/IV | IV | | | Highest risk | II | III/IV | III/IV | IV | | Select Control Procedures: ___II___ | | During Construction Project | Upon Completion of Projects | |-----------|--|--| | Class I | Execute work by method to minimize raising dust from construction operations Immediately replace a ceiling tile displaced for visual inspection | Clean work upon completion of task: major cleaning will be completed by EMS/SPS. Maintenance and contractor should remove any obvious debris generated by their work. | | Class II | Provide active means to prevent airborne dust from dispersing into atmosphere. Water mist work surfaces to control dust while cutting Seal unused doors with duct tape Block off and seal air vents. Place dust mat at entrance and exit of work area. Remove or isolate HVAC system in areas where work is being performed (Building air intake should be isolated if dust cannot be controlled by above measures). Close exit during excavation activities to limit dust entering building when exit is being used. | Wipe work surfaces with disinfectant. Contain construction waste before transport in tightly covered containers. Wet mop &/or vacuum before leaving work area. Remove isolation of HVAC system in area where work is being performed. | | Class III | Remove or isolate HVAC system in area where work is being done to prevent contamination of duct system. Complete all critical barriers, i.e. sheetrock, plywood, plastic, to seal area from non-work area or implement control cube method (cart with plastic covering & sealed connection to work site with HEPA vacuum for vacuuming prior to exit) before construction begins. Maintain negative air pressure within worksite utilizing HEPA-equipped air filtration units. Contain construction waste before transportation in tightly covered containers. Cover transport receptacles or carts. Tape covering unless solid lid is used. | Do not remove barriers from work area until completed project is inspected by Safety Management & Infection Control & thoroughly cleaned by Environmental Management. Ceiling system and tiles must be in place before barriers are removed. Remove barrier materials carefully to minimize spreading of dirt & debris associated with construction. Vacuum work area with HEPA-filtered vacuums. Wet mop with disinfectant. Remove isolation of HVAC system in areas where work is being performed. | | Class IV | Isolate HVAC system in area where work is being done to prevent contamination
of duct system. Complete all critical barriers, i.e., sheetrock, plywood, plastic, to seal area from non-work area or implement control cube method (cart with plastic covering & sealed connection to work site with HEPA vacuum for vacuuming prior to exit) before construction begins. Maintain negative air pressure within worksite utilizing HEPA-equipped air filtration units. Seal holes, pipes, conduits and punctures appropriately. Construct anteroom and require all personnel to pass through this room so they can be vacuumed using a HEPA vacuum cleaner before leaving work site; or the can wear cloth or paper coveralls that are removed each time they leave the work site. All personnel entering the work site are required to wear shoe covers. Shoe covers must be changed each time the worker exits the work area. Do not remove barriers from work area until completed project is inspected by Safety Management & Infection Control & thoroughly cleaned by Environmental Management. | Remove barrier materials carefully to minimize spreading of dirt & debris associated with construction. Contain construction waste before transport in tightly covered containers. Cover transport receptacles or carts. Tape covering unless solid lid. Vacuum work area with HEPA-filtered vacuums. Wet mop with disinfectant. Remove isolation of HVAC system in areas where work is being performed. | ## Comments: Note: Infection Control approval will be required when Construction Activity and Risk Level indicate that Class III or Class IV control procedures are necessary, when disruption in the water lines is a planned part of the activity. Project: 676-15104 403 Chiller Installation Proposed Start Date: TBD Class Type: II Estimated Date of Completion: TBD Project Engineer: Jeff McCoy Project Contractor: TBD Date Approved by Infection Control Officer/designee: 11/17/15 Electronic Signature: Melissa Moore RN BSN, Infection Control Nurse # EXHIBIT B - PCRA Non-Patient Areas | | Pre-Cons | VAMC TOMAH
struction Risk Assessment (PCF | RA) | | | |--|---------------|--|----------------|-----------|------------| | Project: Replace Chiller E | Building | Location(s): Behind Building | 403 | Start | Date: TBD | | COR: Jeff McCoy | | Contractor: TBD | | | | | | | Brief Description of Work: | | | | | This project will install a nexisting chilled water lines. | | ed chiller behind building 403. W | ork will inclu | ude recon | figuration | | Category | | Factors | YES | N/A | Initials | | Voise | | Impact, Duration | | IVA | mittaia | | Industrial Hygienist (IH) | | mpady Dalation | / X | | Do | | /ibration
Industrial Hygienist (IH) | | ol use, Demolition, Distance | | х | Do | | nfection Control Infection Control Coordinator | Cat | tegory of Risk [1] see below
Level: I - III - IV | х | | Do | | Oust
Infection Control
Coordinator | Cut | ting, Grinding, Sanding, etc. | Χ. | | Do | | Life Safety Impact Fire Department | ILS | SM Issues: [2] – see below | х | | D2 | | Security Chief, Police Service | Sit | e Security, Access Control | X | | Do | | Disruption of Utilities COR - Facilities | Planned | Shutdowns, Construction Near
Utility system Supplies | х | - | 200 | | rovide appropriate levels of
2] ILSM Risk Assessment in
plemented. | of patient sa | ICRA) is for evaluation of the leve
fety.
nining whether ILSM are necessar | | ILSM are | to be | | Other Risk Assessments: | | | | YES | N/A | | ermit Required Confined S | space (PRC | S) entry will be necessary. *IH | | | X | | construction debrie will be | ardous abat | ement will be necessary. *IH Recycling Program) *GEMS | | X | X | | Chemicals will be on site | Hazard Con | nmunication/MSDS sheets necess | eary) *IU | X | - | | Compressed gas cylinders | will be on si | te. (Appropriate storage) *IH | | X | | | enetration in floors, walls. | ceilings will | be necessary. (Permit required) | *FD | | X | | cutting, burning, or welding | will be nece | essary (Hot Work Permit) *FD | | X | - | | Off tour construction/work w | ill be neces | sary. (Supervision) *FD | | X | | | O-+ T O-+ -f+b- f-1 | lowing syste | ems be necessary: *Facilities | | X | | END OF SECTION # SECTION 01 33 23 SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES - 1-1. Refer to Articles titled SPECIFICATIONS AND DRAWINGS FOR CONSTRUCTION (FAR 52.236-21) and, SPECIAL NOTES (VAAR 852.236-91), in GENERAL CONDITIONS. - 1-2. For the purposes of this contract, samples test reports, certificates, and manufacturers' literature and data shall also be subject to the previously referenced requirements. The following text refers to all items collectively as SUBMITTALS. - 1-3. Submit for approval, all of the items specifically mentioned under the separate sections of the specification, with information sufficient to evidence full compliance with contract requirements. Materials, fabricated articles and the like to be installed in permanent work shall equal those of approved submittals. After an item has been approved, no change in brand or make will be permitted unless: - A. Satisfactory written evidence is presented to, and approved by Contracting Officer, that manufacturer cannot make scheduled delivery of approved item or; - B. Item delivered has been rejected and substitution of a suitable item is an urgent necessity or; - C. Other conditions become apparent which indicates approval of such substitute item to be in best interest of the Government. - 1-4. Forward submittals in sufficient time to permit proper consideration and approval action by Government. Time submission to assure adequate lead time for procurement of contract required items. Delays attributable to untimely and rejected submittals will not serve as a basis for extending contract time for completion. - 1-5. Submittals will be reviewed for compliance with contract requirements by Architect-Engineer, and action thereon will be taken by Resident Engineer on behalf of the Contracting Officer. - 1-6. Upon receipt of submittals, Architect-Engineer will assign a file number thereto. Contractor, in any subsequent correspondence, shall refer to this file and identification number to expedite replies relative to previously approved or disapproved submittals. - 1-7. The Government reserves the right to require additional submittals, whether or not particularly mentioned in this contract. If additional submittals beyond those required by the contract are furnished pursuant - to request therefor by Contracting Officer, adjustment in contract price and time will be made in accordance with Articles titled CHANGES (FAR 52.243-4) and CHANGES SUPPLEMENT (VAAR 852.236-88) of the GENERAL CONDITIONS. - 1-8. Schedules called for in specifications and shown on shop drawings shall be submitted for use and information of Department of Veterans Affairs and Architect-Engineer. However, the Contractor shall assume responsibility for coordinating and verifying schedules. The Contracting Officer and Architect- Engineer assumes no responsibility for checking schedules or layout drawings for exact sizes, exact numbers and detailed positioning of items. - 1-9. Submittals must be submitted by Contractor only and shipped prepaid. Contracting Officer assumes no responsibility for checking quantities or exact numbers included in such submittals. - A. Submit samples in single units unless otherwise specified. Submit shop drawings, schedules, manufacturers' literature and data, and certificates in quadruplicate, except where a greater number is specified. - B. Submittals will receive consideration only when covered by a transmittal letter signed by Contractor. Letter shall be sent via email and shall contain the list of items, name of Medical Center, name of Contractor, contract number, applicable specification paragraph numbers, applicable drawing numbers (and other information required for exact identification of location for each item), manufacturer and brand, ASTM or Federal Specification Number (if any) and such additional information as may be required by specifications for particular item being furnished. In addition, catalogs shall be marked to indicate specific items submitted for approval. - 1. A copy of letter must be enclosed with items, and any items received without identification letter will be considered "unclaimed goods" and held for a limited time only. - 2. Each sample, certificate, manufacturers' literature and data shall be labeled to indicate the name and location of the Medical Center, name of Contractor, manufacturer, brand, contract number and ASTM or Federal Specification Number as applicable and location(s) on project. - Required certificates shall be signed by an authorized representative of manufacturer or supplier of material, and by Contractor. - C. In addition to complying with the applicable requirements specified in preceding Article 1.9, samples which are required to have Laboratory Tests (those preceded by symbol "LT" under the separate sections of the specification shall be tested, at the expense of Contractor, in a commercial laboratory approved by Contracting Officer. - 1. Laboratory shall furnish Contracting Officer with a certificate stating that it is fully equipped and qualified to perform intended work, is fully acquainted with specification requirements and intended use of materials and is an independent establishment in no way connected with organization of Contractor or with manufacturer or supplier of materials to be tested. - 2. Certificates shall also set forth a list of comparable projects upon which laboratory has performed similar functions during past five years. - 3. Samples and laboratory tests shall be sent directly to approved commercial testing laboratory. - 4. Contractor shall send a copy of transmittal letter to both Resident Engineer and to Architect-Engineer simultaneously with submission
of material to a commercial testing laboratory. - 5. Laboratory test reports shall be sent directly to Resident Engineer for appropriate action. - 6. Laboratory reports shall list contract specification test requirements and a comparative list of the laboratory test results. When tests show that the material meets specification requirements, the laboratory shall so certify on test report. - 7. Laboratory test reports shall also include a recommendation for approval or disapproval of tested item. - D. If submittal samples have been disapproved, resubmit new samples as soon as possible after notification of disapproval. Such new samples shall be marked "Resubmitted Sample" in addition to containing other previously specified information required on label and in transmittal letter. - E. Approved samples will be kept on file by the Resident Engineer at the site until completion of contract, at which time such samples will be delivered to Contractor as Contractor's property. Where noted in technical sections of specifications, approved samples in good condition may be used in their proper locations in contract work. At completion of contract, samples that are not approved will be returned to Contractor only upon request and at Contractor's expense. Such request should be made prior to completion of the contract. Disapproved samples that are not requested for return by Contractor will be discarded after completion of contract. - F. Submittal drawings (shop, erection or setting drawings) and schedules, required for work of various trades, shall be checked before submission by technically qualified employees of Contractor for accuracy, completeness and compliance with contract requirements. These drawings and schedules shall be stamped and signed by Contractor certifying to such check. - 1. For each drawing required, submit one legible photographic paper or vellum reproducible. - 2. Reproducible shall be full size. - 3. Each drawing shall have marked thereon, proper descriptive title, including Medical Center location, project number, manufacturer's number, reference to contract drawing number, detail Section Number, and Specification Section Number. - 4. A space 120 mm by 125 mm $(4-3/4 \ \text{by 5 inches})$ shall be reserved on each drawing to accommodate approval or disapproval stamp. - 5. Submit drawings, ROLLED WITHIN A MAILING TUBE, fully protected for shipment. - 6. One reproducible print of approved or disapproved shop drawings will be forwarded to Contractor. - 7. When work is directly related and involves more than one trade, shop drawings shall be submitted to Architect-Engineer under one cover. - 1-10. Samples, shop drawings, test reports, certificates and manufacturers' literature and data, shall be submitted for approval to Resident Engineer: Jeffrey McCoy, VA Engineering Technician, 608-372-1753 1-11. At the time of transmittal to the Architect-Engineer, the Contractor shall also send a copy of the complete submittal directly to the Resident Engineer. SPEC WRITER NOTE: Include following paragraph only if samples are to be sent to project site. If so, delete reference to samples in Paragraph 1-10. 1-12. Samples for approval shall be sent to Architect-Engineer, in care of Resident Engineer, VA Medical Center, Jeffrey McCoy, VA Engineering Technician, 608-372-1753 - - - E N D - - - # SECTION 01 35 26 SAFETY REQUIREMENTS # TABLE OF CONTENTS | 1.1 | APPLICABLE PUBLICATIONS | 2 | |---------------------|--|----| | 1.2 | DEFINITIONS | 3 | | 1.3 | REGULATORY REQUIREMENTS | 4 | | 1.4 | ACCIDENT PREVENTION PLAN (APP) | 4 | | 1.5 | ACTIVITY HAZARD ANALYSES (AHAs) | 10 | | 1.6 | PRECONSTRUCTION CONFERENCE | 11 | | 1.7
(CP) | "SITE SAFETY AND HEALTH OFFICER" (SSHO) and "COMPETENT PERSON" | 12 | | 1.8 | TRAINING | 13 | | 1.9 | INSPECTIONS | 14 | | 1.10 | ACCIDENTS, OSHA 300 LOGS, AND MAN-HOURS | 15 | | 1.11 | PERSONAL PROTECTIVE EQUIPMENT (PPE) | 16 | | 1.12
REFEF | INFECTION CONTROL (NOT USED) R TO SECTION 01 01 10 INFECTION CONTROL | 16 | | 1.13 | TUBERCULOSIS SCREENING | 17 | | 1.14 | FIRE SAFETY | 17 | | 1.15 | ELECTRICAL | 20 | | 1.16 | FALL PROTECTION | 21 | | 1.17 | SCAFFOLDS AND OTHER WORK PLATFORMS | 22 | | 1.20 | CONTROL OF HAZARDOUS ENERGY (LOCKOUT/TAGOUT) | 23 | | 1.21 | CONFINED SPACE ENTRY | 23 | | 1.22 | WELDING AND CUTTING | 23 | | 1.23 | LADDERS | 23 | | 1 24 | FLOOR & WALL OPENINGS | 24 | # SECTION 01 35 26 SAFETY REQUIREMENTS #### 1.1 APPLICABLE PUBLICATIONS: - A. Latest publications listed below form part of this Article to extent referenced. Publications are referenced in text by basic designations only. - B. American Society of Safety Engineers (ASSE): | A10.1-2011 | .Pre-Project | & | Pre-Task | Safety | and | Health | |------------|--------------|---|----------|--------|-----|--------| | | Planning | | | | | | - A10.34-2012......Protection of the Public on or Adjacent to Construction Sites - A10.38-2013......Basic Elements of an Employer's Program to Provide a Safe and Healthful Work Environment American National Standard Construction and Demolition Operations - C. American Society for Testing and Materials (ASTM): - E84-2013......Surface Burning Characteristics of Building Materials - D. The Facilities Guidelines Institute (FGI): FGI Guidelines-2010Guidelines for Design and Construction of Healthcare Facilities E. National Fire Protection Association (NFPA): | 10-2013Standard | for | Portable | Fire | Extinguishers | |-----------------|-----|----------|------|---------------| 30-2012......Flammable and Combustible Liquids Code 51B-2014......Standard for Fire Prevention During Welding, Cutting and Other Hot Work 70-2014......National Electrical Code 70B-2013......Recommended Practice for Electrical Equipment Maintenance 70E-2012Standard for Electrical Safety in the Workplace | 99-2012Health Care Facilities Code | |---| | 241-2013Standard for Safeguarding Construction, | | Alteration, and Demolition Operations | F. The Joint Commission (TJC) TJC ManualComprehensive Accreditation and Certification G. U.S. Nuclear Regulatory Commission 10 CFR 20Standards for Protection Against Radiation H. U.S. Occupational Safety and Health Administration (OSHA): 29 CFR 1904Reporting and Recording Injuries & Illnesses 29 CFR 1910Safety and Health Regulations for General Industry 29 CFR 1926Safety and Health Regulations for Construction Industry CPL 2-0.124.....Multi-Employer Citation Policy I. VHA Directive 2005-007 # 1.2 DEFINITIONS: - A. OSHA "Competent Person" (CP). One who is capable of identifying existing and predictable hazards in the surroundings and working conditions which are unsanitary, hazardous or dangerous to employees, and who has the authorization to take prompt corrective measures to eliminate them (see 29 CFR 1926.32(f)). - B. "Qualified Person" means one who, by possession of a recognized degree, certificate, or professional standing, or who by extensive knowledge, training and experience, has successfully demonstrated his ability to solve or resolve problems relating to the subject matter, the work, or the project. - C. High Visibility Accident. Any mishap which may generate publicity or high visibility. - D. Medical Treatment. Treatment administered by a physician or by registered professional personnel under the standing orders of a physician. Medical treatment does not include first aid treatment even through provided by a physician or registered personnel. - E. Recordable Injuries or Illnesses. Any work-related injury or illness that results in: - 1. Death, regardless of the time between the injury and death, or the length of the illness; - Days away from work (any time lost after day of injury/illness onset); - 3. Restricted work; - 4. Transfer to another job; - 5. Medical treatment beyond first aid; - 6. Loss of consciousness; or - 7. A significant injury or illness diagnosed by a physician or other licensed health care professional, even if it did not result in (1) through (6) above. # 1.3 REGULATORY REQUIREMENTS: A. In addition to the detailed requirements included in the provisions of this contract, comply with 29 CFR 1926, comply with 29 CFR 1910 as incorporated by reference within 29 CFR 1926, comply with ASSE A10.34, and all applicable federal, state, and local laws, ordinances, criteria, rules and regulations. Submit matters of interpretation of standards for resolution before starting work. Where the requirements of this specification, applicable laws, criteria, ordinances, regulations, and referenced documents vary, the most stringent requirements govern except with specific approval and acceptance by the and Facility Safety Officer or Contracting Officer Representative. ## 1.4 ACCIDENT PREVENTION PLAN (APP): A. The APP (aka Construction Safety & Health Plan) shall interface with the Contractor's overall safety and health program. Include any portions of the Contractor's overall safety and health program referenced in the APP in the applicable APP element and ensure it is site-specific. The Government considers the Prime Contractor to be the "controlling authority" for all worksite safety and health of each subcontractor(s). Contractors are responsible for informing their subcontractors of the safety provisions under the terms of the contract and the penalties for noncompliance, coordinating the work to prevent one craft from interfering with or creating hazardous working conditions for other crafts, and inspecting subcontractor operations to ensure that accident prevention responsibilities are being carried out. - B. The APP shall be prepared as follows: - 1. Written in English by a qualified person who is employed by the Prime Contractor articulating the specific work and hazards pertaining to the contract (model language can be found in ASSE A10.33). Specifically articulating the safety requirements
found within these VA contract safety specifications. - 2. Address both the Prime Contractors and the subcontractors work operations. - 3. State measures to be taken to control hazards associated with materials, services, or equipment provided by suppliers. - 4. Address all the elements/sub-elements and in order as follows: - a. **SIGNATURE SHEET.** Title, signature, and phone number of the following: - Plan preparer (Qualified Person such as corporate safety staff person or contracted Certified Safety Professional with construction safety experience); - 2) Plan approver (company/corporate officers authorized to obligate the company); - 3) Plan concurrence (e.g., Chief of Operations, Corporate Chief of Safety, Corporate Industrial Hygienist, project manager or superintendent, project safety professional). Provide concurrence of other applicable corporate and project personnel (Contractor). - b. BACKGROUND INFORMATION. List the following: - 1) Contractor; - 2) Contract number; - 3) Project name; - 4) Brief project description, description of work to be performed, and location; phases of work anticipated (these will require an AHA). - c. STATEMENT OF SAFETY AND HEALTH POLICY. Provide a copy of current corporate/company Safety and Health Policy Statement, detailing commitment to providing a safe and healthful workplace for all employees. The Contractor's written safety program goals, objectives, and accident experience goals for this contract should be provided. - d. RESPONSIBILITIES AND LINES OF AUTHORITIES. Provide the following: - 1) A statement of the employer's ultimate responsibility for the implementation of his SOH program; - 2) Identification and accountability of personnel responsible for safety at both corporate and project level. Contracts specifically requiring safety or industrial hygiene personnel shall include a copy of their resumes. - 3) The names of Competent and/or Qualified Person(s) and proof of competency/qualification to meet specific OSHA Competent/Qualified Person(s) requirements must be attached.; - 4) Requirements that no work shall be performed unless a designated competent person is present on the job site; - 5) Requirements for pre-task Activity Hazard Analysis (AHAs); - 6) Lines of authority; - 7) Policies and procedures regarding noncompliance with safety requirements (to include disciplinary actions for violation of safety requirements) should be identified; - **e. SUBCONTRACTORS AND SUPPLIERS.** If applicable, provide procedures for coordinating SOH activities with other employers on the job site: - 1) Identification of subcontractors and suppliers (if known); - 2) Safety responsibilities of subcontractors and suppliers. ## f. TRAINING. - 1) Site-specific SOH orientation training at the time of initial hire or assignment to the project for every employee before working on the project site is required. - 2) Mandatory training and certifications that are applicable to this project (e.g., explosive actuated tools, crane operator, rigger, crane signal person, fall protection, electrical lockout/NFPA 70E, machine/equipment lockout, confined space, etc...) and any requirements for periodic retraining/recertification are required. - 3) Procedures for ongoing safety and health training for supervisors and employees shall be established to address changes in site hazards/conditions. - 4) OSHA 10-hour training is required for all workers on site and the OSHA 30-hour training is required for Trade Competent Persons (CPs) ## g. SAFETY AND HEALTH INSPECTIONS. - 1) Specific assignment of responsibilities for a minimum daily job site safety and health inspection during periods of work activity: Who will conduct (e.g., "Site Safety and Health CP"), proof of inspector's training/qualifications, when inspections will be conducted, procedures for documentation, deficiency tracking system, and follow-up procedures. - 2) Any external inspections/certifications that may be required (e.g., contracted CSP or CSHT) - h. ACCIDENT INVESTIGATION & REPORTING. The Contractor shall conduct mishap investigations of all OSHA Recordable Incidents. The APP shall include accident/incident investigation procedure & identify person(s) responsible to provide the following to the Facility Safety Officer or Contracting Officer Representative: - 1) Exposure data (man-hours worked); - 2) Accident investigations, reports, and logs. - i. PLANS (PROGRAMS, PROCEDURES) REQUIRED. Based on a risk assessment of contracted activities and on mandatory OSHA compliance programs, the Contractor shall address all applicable occupational risks in site-specific compliance and accident prevention plans. These Plans shall include but are not be limited to procedures for addressing the risks associates with the following: - 1) Emergency response; - 2) Contingency for severe weather; - 3) Fire Prevention; - 4) Medical Support; - 5) Posting of emergency telephone numbers; - 6) Prevention of alcohol and drug abuse; - 7) Site sanitation (housekeeping, drinking water, toilets); - 8) Night operations and lighting; - 9) Hazard communication program; - 10) Welding/Cutting "Hot" work; - 11) Electrical Safe Work Practices (Electrical LOTO/NFPA 70E); - 12) General Electrical Safety - 13) Hazardous energy control (Machine LOTO); - 14) Site-Specific Fall Protection & Prevention; - 15) Excavation/trenching; - 16) Asbestos abatement; - 17) Lead abatement; - 18) Crane Critical lift; - 19) Respiratory protection; - 20) Health hazard control program; - 21) Radiation Safety Program; - 22) Abrasive blasting; - 23) Heat/Cold Stress Monitoring; - 24) Crystalline Silica Monitoring (Assessment); - 25) Demolition plan (to include engineering survey); - 26) Formwork and shoring erection and removal; - 27) PreCast Concrete. - C. Submit the APP to the Facility Safety Officer or Contracting Officer Representative for review for compliance with contract requirements in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES 15 calendar days prior to the date of the preconstruction conference for acceptance. Work cannot proceed without an accepted APP. - D. Once accepted by the Facility Safety Officer or Contracting Officer Representative, the APP and attachments will be enforced as part of the contract. Disregarding the provisions of this contract or the accepted APP will be cause for stopping of work, at the discretion of the Contracting Officer, until the matter has been rectified. - E. Once work begins, changes to the accepted APP shall be made with the knowledge and concurrence of the Project Manager, project superintendent, project overall designated OSHA Competent Person, and facility Safety Officer and Contracting Officer Representative. Should any severe hazard exposure, i.e. imminent danger, become evident, stop work in the area, secure the area, and develop a plan to remove the exposure and control the hazard. Notify the Contracting Officer within 24 hours of discovery. Eliminate/remove the hazard. In the interim, take all necessary action to restore and maintain safe working conditions in order to safeguard onsite personnel, visitors, the public (as defined by ASSE/SAFE A10.34) and the environment. ## 1.5 ACTIVITY HAZARD ANALYSES (AHAS): - A. AHAs are also known as Job Hazard Analyses, Job Safety Analyses, and Activity Safety Analyses. Before beginning each work activity involving a type of work presenting hazards not experienced in previous project operations or where a new work crew or sub-contractor is to perform the work, the Contractor(s) performing that work activity shall prepare an AHA (Example electronic AHA forms can be found on the US Army Corps of Engineers web site) - B. AHAs shall define the activities being performed and identify the work sequences, the specific anticipated hazards, site conditions, equipment, materials, and the control measures to be implemented to eliminate or reduce each hazard to an acceptable level of risk. - C. Work shall not begin until the AHA for the work activity has been accepted by the Facility Safety Officer or Contracting Officer Representative and discussed with all engaged in the activity, including the Contractor, subcontractor(s), and Government on-site representatives at preparatory and initial control phase meetings. - 1. The names of the Competent/Qualified Person(s) required for a particular activity (for example, excavations, scaffolding, fall protection, other activities as specified by OSHA and/or other State and Local agencies) shall be identified and included in the AHA. Certification of their competency/qualification shall be submitted to the Government Designated Authority (GDA) for acceptance prior to the start of that work activity. - 2. The AHA shall be reviewed and modified as necessary to address changing site conditions, operations, or change of competent/qualified person(s). - a. If more than one Competent/Qualified Person is used on the AHA activity, a list of names shall be submitted as an attachment to the AHA. Those listed must be Competent/Qualified for the type of work involved in the AHA and familiar with current site safety issues. - b. If a new Competent/Qualified Person (not on the original list) is added, the list shall be updated (an administrative action not requiring an updated AHA). The new person shall acknowledge in writing that he or she has reviewed the AHA and is familiar with current site safety issues. - 3. Submit AHAs to the Facility Safety Officer or Contracting Officer Representative for review for compliance with contract requirements in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES for review at least 15 calendar days prior to the start of each phase. Subsequent AHAs as shall be formatted as amendments to the APP. The analysis should be used during daily inspections to ensure the implementation and effectiveness of the activity's safety and health controls. - 4. The AHA list will be reviewed periodically (at least
monthly) at the Contractor supervisory safety meeting and updated as necessary when procedures, scheduling, or hazards change. - 5. Develop the activity hazard analyses using the project schedule as the basis for the activities performed. All activities listed on the project schedule will require an AHA. The AHAs will be developed by the contractor, supplier, or subcontractor and provided to the prime contractor for review and approval and then submitted to the Facility Safety Officer or Contracting Officer Representative. ## 1.6 PRECONSTRUCTION CONFERENCE: - A. Contractor representatives who have a responsibility or significant role in implementation of the accident prevention program, as required by 29 CFR 1926.20(b)(1), on the project shall attend the preconstruction conference to gain a mutual understanding of its implementation. This includes the project superintendent, subcontractor superintendents, and any other assigned safety and health professionals. - B. Discuss the details of the submitted APP to include incorporated plans, programs, procedures and a listing of anticipated AHAs that will be developed and implemented during the performance of the contract. This list of proposed AHAs will be reviewed at the conference and an agreement will be reached between the Contractor and the Contracting Officer's representative as to which phases will require an analysis. In addition, establish a schedule for the preparation, submittal, review, and acceptance of AHAs to preclude project delays. C. Deficiencies in the submitted APP will be brought to the attention of the Contractor within 14 days of submittal, and the Contractor shall revise the plan to correct deficiencies and re-submit it for acceptance. Do not begin work until there is an accepted APP. # 1.7 "SITE SAFETY AND HEALTH OFFICER" (SSHO) AND "COMPETENT PERSON" (CP): - A. The Prime Contractor shall designate a minimum of one SSHO at each project site that will be identified as the SSHO to administer the Contractor's safety program and government-accepted Accident Prevention Plan. Each subcontractor shall designate a minimum of one CP in compliance with 29 CFR 1926.20 (b)(2) that will be identified as a CP to administer their individual safety programs. - B. Further, all specialized Competent Persons for the work crews will be supplied by the respective contractor as required by 29 CFR 1926 (i.e. Asbestos, Electrical, Cranes, & Derricks, Demolition, Fall Protection, Fire Safety/Life Safety, Ladder, Rigging, Scaffolds, and Trenches/Excavations). - C. These Competent Persons can have collateral duties as the subcontractor's superintendent and/or work crew lead persons as well as fill more than one specialized CP role (i.e. Asbestos, Electrical, Cranes, & Derricks, Demolition, Fall Protection, Fire Safety/Life Safety, Ladder, Rigging, Scaffolds, and Trenches/Excavations). - D. The SSHO or an equally-qualified Designated Representative/alternate will maintain a presence on the site during construction operations in accordance with FAR Clause 52.236-6: Superintendence by the Contractor. CPs will maintain presence during their construction activities in accordance with above mentioned clause. A listing of the designated SSHO and all known CPs shall be submitted prior to the start of work as part of the APP with the training documentation and/or AHA as listed in Section 1.8 below. - E. The repeated presence of uncontrolled hazards during a contractor's work operations will result in the designated CP as being deemed incompetent and result in the required removal of the employee in accordance with FAR Clause 52.236-5: Material and Workmanship, Paragraph (c). ## 1.8 TRAINING: - A. The designated Prime Contractor SSHO must meet the requirements of all applicable OSHA standards and be capable (through training, experience, and qualifications) of ensuring that the requirements of 29 CFR 1926.16 and other appropriate Federal, State and local requirements are met for the project. As a minimum the SSHO must have completed the OSHA 30-hour Construction Safety class and have five (5) years of construction industry safety experience or three (3) years if he/she possesses a Certified Safety Professional (CSP) or certified Construction Safety and Health Technician (CSHT) certification or have a safety and health degree from an accredited university or college. - B. All designated CPs shall have completed the OSHA 30-hour Construction Safety course within the past 5 years. - C. In addition to the OSHA 30 Hour Construction Safety Course, all CPs with high hazard work operations such as operations involving asbestos, electrical, cranes, demolition, work at heights/fall protection, fire safety/life safety, ladder, rigging, scaffolds, and trenches/excavations shall have a specialized formal course in the hazard recognition & control associated with those high hazard work operations. Documented "repeat" deficiencies in the execution of safety requirements will require retaking the requisite formal course. - D. All other construction workers shall have the OSHA 10-hour Construction Safety Outreach course and any necessary safety training to be able to identify hazards within their work environment. - E. Submit training records associated with the above training requirements to the Facility Safety Officer or Contracting Officer Representative for review for compliance with contract requirements in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES 15 calendar days prior to the date of the preconstruction conference for acceptance. - F. Prior to any worker for the contractor or subcontractors beginning work, they shall undergo a safety briefing provided by the SSHO or his/her designated representative. As a minimum, this briefing shall include information on the site-specific hazards, construction limits, VAMC safety guidelines, means of egress, break areas, work hours, locations of restrooms, use of VAMC equipment, emergency procedures, accident reporting etc... Documentation shall be provided to the Resident Engineer that individuals have undergone contractor's safety briefing. - G. Ongoing safety training will be accomplished in the form of weekly documented safety meeting. ## 1.9 INSPECTIONS: - A. The SSHO shall conduct frequent and regular safety inspections (daily) of the site and each of the subcontractors CPs shall conduct frequent and regular safety inspections (daily) of the their work operations as required by 29 CFR 1926.20(b)(2). Each week, the SSHO shall conduct a formal documented inspection of the entire construction areas with the subcontractors' "Trade Safety and Health CPs" present in their work areas. Coordinate with, and report findings and corrective actions weekly to Facility Safety Officer or Contracting Officer Representative. - B. A Certified Safety Professional (CSP) with specialized knowledge in construction safety or a certified Construction Safety and Health Technician (CSHT) shall randomly conduct a monthly site safety inspection. The CSP or CSHT can be a corporate safety professional or independently contracted. The CSP or CSHT will provide their certificate number on the required report for verification as necessary. - 1. Results of the inspection will be documented with tracking of the identified hazards to abatement. - 2. The Officer or Contracting Officer Representative will be notified immediately prior to start of the inspection and invited to accompany the inspection. - 3. Identified hazard and controls will be discussed to come to a mutual understanding to ensure abatement and prevent future reoccurrence. - 4. A report of the inspection findings with status of abatement will be provided to the Facility Safety Officer or Contracting Officer Representative within one week of the onsite inspection. ## 1.10 ACCIDENTS, OSHA 300 LOGS, AND MAN-HOURS: - A. Notify the Facility Safety Officer or Contracting Officer Representative as soon as practical, but no more than four hours after any accident meeting the definition of OSHA Recordable Injuries or Illnesses or High Visibility Accidents, property damage equal to or greater than \$5,000, or any weight handling equipment accident. Within notification include contractor name; contract title; type of contract; name of activity, installation or location where accident occurred; date and time of accident; names of personnel injured; extent of property damage, if any; extent of injury, if known, and brief description of accident (to include type of construction equipment used, PPE used, etc.). Preserve the conditions and evidence on the accident site until the Facility Safety Officer or Contracting Officer Representative determine whether a government investigation will be conducted. - B. Conduct an accident investigation for recordable injuries and illnesses, for Medical Treatment defined in paragraph DEFINITIONS, and property damage accidents resulting in at least \$20,000 in damages, to establish the root cause(s) of the accident. Complete the VA Form 2162, and provide the report to the Facility Safety Officer or Contracting Officer Representative 5 calendar days of the accident. The Facility Safety Officer or Contracting Officer Representative will provide copies of any required or special forms. - C. A summation of all man-hours worked by the contractor and associated sub-contractors for each month will be reported to the Facility Safety Officer or Contracting Officer Representative monthly. - D. A summation of all OSHA recordable accidents experienced on site by the contractor and associated sub-contractors for each month will be provided to the Facility Safety Officer or Contracting Officer Representative monthly. The contractor and associated sub-contractors' OSHA 300 logs will be made available to the Facility Safety Officer or Contracting Officer Representative as requested. ## 1.11 PERSONAL PROTECTIVE EQUIPMENT (PPE): A. PPE is governed in all areas by the nature of the
work the employee is performing. For example, specific PPE required for performing work on electrical equipment is identified in NFPA 70E, Standard for Electrical Safety in the Workplace. # B. Mandatory PPE includes: - 1. Hard Hats unless written authorization is given by the Facility Safety Officer or Contracting Officer Representative in circumstances of work operations that have limited potential for falling object hazards such as during finishing work or minor remodeling. With authorization to relax the requirement of hard hats, if a worker becomes exposed to an overhead falling object hazard, then hard hats would be required in accordance with the OSHA regulations. - 2. Safety glasses unless written authorization is given by the Facility Safety Officer or Contracting Officer Representative appropriate safety glasses meeting the ANSI Z.87.1 standard must be worn by each person on site. - 3. Appropriate Safety Shoes based on the hazards present, safety shoes meeting the requirements of ASTM F2413-11 shall be worn by each person on site unless written authorization is given by the Facility Safety Officer or Contracting Officer Representative . - 4. Hearing protection Use personal hearing protection at all times in designated noise hazardous areas or when performing noise hazardous tasks. # 1.12 INFECTION CONTROL (NOT USED) Refer to Section 01 01 10 INFECTION CONTROL #### 1.13 TUBERCULOSIS SCREENING - A. Contractor shall provide written certification that all contract employees assigned to the work site have had a pre-placement tuberculin screening within 90 days prior to assignment to the worksite and been found have negative TB screening reactions. Contractors shall be required to show documentation of negative TB screening reactions for any additional workers who are added after the 90-day requirement before they will be allowed to work on the work site. NOTE: This can be the Center for Disease Control (CDC) and Prevention and two-step skin testing or a Food and Drug Administration (FDA)-approved blood test. - 1. Contract employees manifesting positive screening reactions to the tuberculin shall be examined according to current CDC guidelines prior to working on VHA property. - 2. Subsequently, if the employee is found without evidence of active (infectious) pulmonary TB, a statement documenting examination by a physician shall be on file with the employer (construction contractor), noting that the employee with a positive tuberculin screening test is without evidence of active (infectious) pulmonary TB. - 3. If the employee is found with evidence of active (infectious) pulmonary TB, the employee shall require treatment with a subsequent statement to the fact on file with the employer before being allowed to return to work on VHA property. ## 1.14 FIRE SAFETY - A. Fire Safety Plan: Establish and maintain a site-specific fire protection program in accordance with 29 CFR 1926. Prior to start of work, prepare a plan detailing project-specific fire safety measures, including periodic status reports, and submit to Contracting Officer Representative for review for compliance with contract requirements in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES. This plan may be an element of the Accident Prevention Plan. - B. Site and Building Access: Maintain free and unobstructed access to facility emergency services and for fire, police and other emergency response forces in accordance with NFPA 241. - C. Separate temporary facilities, such as trailers, storage sheds, and dumpsters, from existing buildings and new construction by distances in accordance with NFPA 241. For small facilities with less than 6 m (20 feet) exposing overall length, separate by 3m (10 feet). - D. Temporary Construction Partitions: Reference Also Section 01 01 10 IC Infection Control - 1. Install and maintain temporary construction partitions to provide smoke-tight separations between construction areas and adjoining areas. Construct partitions of gypsum board or treated plywood (flame spread rating of 25 or less in accordance with ASTM E84) on both sides of fire retardant treated wood or metal steel studs. Extend the partitions through suspended ceilings to floor slab deck or roof. Seal joints and penetrations. At door openings, install Class C, % hour fire/smoke rated doors with self-closing devices. - 2. Install one-hour fire-rated temporary construction partitions as shown on drawings to maintain integrity of existing exit stair enclosures, exit passageways, fire-rated enclosures of hazardous areas, horizontal exits, smoke barriers, vertical shafts and openings enclosures. - 3. Close openings in smoke barriers and fire-rated construction to maintain fire ratings. Seal penetrations with listed throughpenetration firestop materials in accordance with Section 07 84 00, FIRESTOPPING. - E. Temporary Heating and Electrical: Install, use and maintain installations in accordance with 29 CFR 1926, NFPA 241 and NFPA 70. - F. Means of Egress: Do not block exiting for occupied buildings, including paths from exits to roads. Minimize disruptions and coordinate with Contracting Officer Representative. - G. Egress Routes for Construction Workers: Maintain free and unobstructed egress. Inspect daily. Report findings and corrective actions weekly to Contracting Officer Representative. - H. Fire Extinguishers: Provide and maintain extinguishers in construction areas and temporary storage areas in accordance with 29 CFR 1926, NFPA 241 and NFPA 10. - I. Flammable and Combustible Liquids: Store, dispense and use liquids in accordance with 29 CFR 1926, NFPA 241 and NFPA 30. - J. Existing Fire Protection: Do not impair automatic sprinklers, smoke and heat detection, and fire alarm systems, except for portions immediately under construction, and temporarily for connections. Provide fire watch for impairments more than 4 hours in a 24-hour period. Request interruptions in accordance with Article, OPERATIONS AND STORAGE AREAS, and coordinate with Contracting Officer Representative. All existing or temporary fire protection systems (fire alarms, sprinklers) located in construction areas shall be tested as coordinated with the medical center. Parameters for the testing and results of any tests performed shall be recorded by the medical center and copies provided to the Resident Engineer. - K. Smoke Detectors: Prevent accidental operation. Remove temporary covers at end of work operations each day. Coordinate with Contracting Officer Representative. - L. Hot Work: Perform and safeguard hot work operations in accordance with NFPA 241 and NFPA 51B. Coordinate with Resident Engineer. Obtain permits from Resident Engineer at least 48 hours in advance. Designate contractor's responsible project-site fire prevention program manager to permit hot work. - M. Fire Hazard Prevention and Safety Inspections: Inspect entire construction areas weekly. Coordinate with, and report findings and corrective actions weekly to Contracting Officer Representative. - N. Smoking: Smoking is prohibited in and adjacent to construction areas inside existing buildings and additions under construction. In separate and detached buildings under construction, smoking is prohibited except in designated smoking rest areas. - O. Dispose of waste and debris in accordance with NFPA 241. Remove from buildings daily. P. If required, submit documentation to the COR that personnel have been trained in the fire safety aspects of working in areas with impaired structural or compartmentalization features. #### 1.15 ELECTRICAL - A. All electrical work shall comply with NFPA 70 (NEC), NFPA 70B, NFPA 70E, 29 CFR Part 1910 Subpart J General Environmental Controls, 29 CFR Part 1910 Subpart S Electrical, and 29 CFR 1926 Subpart K in addition to other references required by contract. - B. All qualified persons performing electrical work under this contract shall be licensed journeyman or master electricians. All apprentice electricians performing under this contract shall be deemed unqualified persons unless they are working under the immediate supervision of a licensed electrician or master electrician. - C. All electrical work will be accomplished de-energized and in the Electrically Safe Work Condition (refer to NFPA 70E for Work Involving Electrical Hazards, including Exemptions to Work Permit). Any Contractor, subcontractor or temporary worker who fails to fully comply with this requirement is subject to immediate termination in accordance with FAR clause 52.236-5(c). Only in rare circumstance where achieving an electrically safe work condition prior to beginning work would increase or cause additional hazards, or is infeasible due to equipment design or operational limitations is energized work permitted. The Contracting Officer Representative with approval of the Medical Center Director will make the determination if the circumstances would meet the exception outlined above. An AHA specific to energized work activities will be developed, reviewed, and accepted prior to the start of that work. - 1. Development of a Hazardous Electrical Energy Control Procedure is required prior to de-energization. A single Simple Lockout/Tagout Procedure for multiple work operations can only be used for work involving qualified person(s) de-energizing one set of conductors or circuit part source. Task specific Complex Lockout/Tagout Procedures are required at all other times. - 2. Verification of the absence of voltage after de-energization and lockout/tagout is considered "energized electrical work" (live work) under NFPA 70E, and shall only be performed by qualified persons wearing appropriate shock protective (voltage rated) gloves and arc rate personal protective clothing and equipment, using Underwriters Laboratories (UL) tested and appropriately rated contact electrical testing instruments or equipment appropriate for the environment in which they will be used. - 3. Personal Protective Equipment
(PPE) and electrical testing instruments will be readily available for inspection by the Contracting Officer Representative. - D. Before beginning any electrical work, an Activity Hazard Analysis (AHA) will be conducted to include Shock Hazard and Arc Flash Hazard analyses (NFPA Tables can be used only as a last alterative and it is strongly suggested a full Arc Flash Hazard Analyses be conducted). Work shall not begin until the AHA for the work activity has been accepted by the Contracting Officer Representative and discussed with all engaged in the activity, including the Contractor, subcontractor(s), and Government on-site representatives at preparatory and initial control phase meetings. - E. Ground-fault circuit interrupters. All 120-volt, single-phase 15- and 20-ampere receptacle outlets on construction sites shall have approved ground-fault circuit interrupters for personnel protection. "Assured Equipment Grounding Conductor Program" only is not allowed. # 1.16 FALL PROTECTION - A. The fall protection (FP) threshold height requirement is 6 ft (1.8 m) for ALL WORK, unless specified differently or the OSHA 29 CFR 1926 requirements are more stringent, to include steel erection activities, systems-engineered activities (prefabricated) metal buildings, residential (wood) construction and scaffolding work. - 1. The use of a Safety Monitoring System (SMS) as a fall protection method is prohibited. - 2. The use of Controlled Access Zone (CAZ) as a fall protection method is prohibited. - 3. A Warning Line System (WLS) may ONLY be used on floors or flat or low-sloped roofs (between 0 18.4 degrees or 4:12 slope) and shall be erected around all sides of the work area (See 29 CFR 1926.502(f) for construction of WLS requirements). Working within the WLS does not require FP. No worker shall be allowed in the area between the roof or floor edge and the WLS without FP. FP is required when working outside the WLS. 4. Fall protection while using a ladder will be governed by the OSHA requirements. # 1.17 SCAFFOLDS AND OTHER WORK PLATFORMS - A. All scaffolds and other work platforms construction activities shall comply with 29 CFR 1926 Subpart L. - B. The fall protection (FP) threshold height requirement is 6 ft (1.8 m) as stated in Section 1.16. - C. The following hierarchy and prohibitions shall be followed in selecting appropriate work platforms. - Scaffolds, platforms, or temporary floors shall be provided for all work except that can be performed safely from the ground or similar footing. - 2. Ladders less than 20 feet may be used as work platforms only when use of small hand tools or handling of light material is involved. - 3. Ladder jacks, lean-to, and prop-scaffolds are prohibited. - 4. Emergency descent devices shall not be used as working platforms. - D. Contractors shall use a scaffold tagging system in which all scaffolds are tagged by the Competent Person. Tags shall be color-coded: green indicates the scaffold has been inspected and is safe to use; red indicates the scaffold is unsafe to use. Tags shall be readily visible, made of materials that will withstand the environment in which they are used, be legible and shall include: - 1. The Competent Person's name and signature; - 2. Dates of initial and last inspections. E. Mast Climbing work platforms: When access ladders, including masts designed as ladders, exceed 20 ft (6 m) in height, positive fall protection shall be used. # 1.20 CONTROL OF HAZARDOUS ENERGY (LOCKOUT/TAGOUT) A. All installation, maintenance, and servicing of equipment or machinery shall comply with 29 CFR 1910.147 except for specifically referenced operations in 29 CFR 1926 such as concrete & masonry equipment [1926.702(j)], heavy machinery & equipment [1926.600(a)(3)(i)], and process safety management of highly hazardous chemicals (1926.64). Control of hazardous electrical energy during the installation, maintenance, or servicing of electrical equipment shall comply with Section 1.15 to include NFPA 70E and other VA specific requirements discussed in the section. ## 1.21 CONFINED SPACE ENTRY - A. All confined space entry shall comply with 29 CFR 1910.146 except for specifically referenced operations in 29 CFR 1926 such as excavations/trenches [1926.651(g)]. - B. A site-specific Confined Space Entry Plan (including permitting process) shall be developed and submitted to the Resident Engineer and/or other Government Designated Authority. #### 1.22 WELDING AND CUTTING As specified in section 1.14, Hot Work: Perform and safeguard hot work operations in accordance with NFPA 241 and NFPA 51B. Coordinate with Resident Engineer and/or other Government Designated Authority. Obtain permits from Resident Engineer and/or other Government Designated Authority at least 48 hours in advance. Designate contractor's responsible project-site fire prevention program manager to permit hot work. ## 1.23 LADDERS - A. All Ladder use shall comply with 29 CFR 1926 Subpart X. - B. All portable ladders shall be of sufficient length and shall be placed so that workers will not stretch or assume a hazardous position. - C. Manufacturer safety labels shall be in place on ladders - D. Step Ladders shall not be used in the closed position - E. Top steps or cap of step ladders shall not be used as a step - F. Portable ladders, used as temporary access, shall extend at least 3 ft (0.9 m) above the upper landing surface. - 1. When a 3 ft (0.9-m) extension is not possible, a grasping device (such as a grab rail) shall be provided to assist workers in mounting and dismounting the ladder. - In no case shall the length of the ladder be such that ladder deflection under a load would, by itself, cause the ladder to slip from its support. - G. Ladders shall be inspected for visible defects on a daily basis and after any occurrence that could affect their safe use. Broken or damaged ladders shall be immediately tagged "DO NOT USE," or with similar wording, and withdrawn from service until restored to a condition meeting their original design. ## 1.24 FLOOR & WALL OPENINGS - A. All floor and wall openings shall comply with 29 CFR 1926 Subpart M. - B. Floor and roof holes/openings are any that measure over 2 in (51 mm) in any direction of a walking/working surface which persons may trip or fall into or where objects may fall to the level below. See 21.F for covering and labeling requirements. Skylights located in floors or roofs are considered floor or roof hole/openings. - C. All floor, roof openings or hole into which a person can accidentally walk or fall through shall be guarded either by a railing system with toeboards along all exposed sides or a load-bearing cover. When the cover is not in place, the opening or hole shall be protected by a removable guardrail system or shall be attended when the guarding system has been removed, or other fall protection system. - 1. Covers shall be capable of supporting, without failure, at least twice the weight of the worker, equipment and material combined. - 2. Covers shall be secured when installed, clearly marked with the word "HOLE", "COVER" or "Danger, Roof Opening-Do Not Remove" or color- coded or equivalent methods (e.g., red or orange "X"). Workers must be made aware of the meaning for color coding and equivalent methods. - 3. Roofing material, such as roofing membrane, insulation or felts, covering or partly covering openings or holes, shall be immediately cut out. No hole or opening shall be left unattended unless covered. - 4. Non-load-bearing skylights shall be guarded by a load-bearing skylight screen, cover, or railing system along all exposed sides. - 5. Workers are prohibited from standing/walking on skylights. - - - E N D - - - 01 35 26 -25 # SECTION 01 57 19 TEMPORARY ENVIRONMENTAL CONTROLS #### PART 1 - GENERAL #### 1.1 DESCRIPTION - A. This section specifies the control of environmental pollution and damage that the Contractor must consider for air, water, and land resources. It includes management of visual aesthetics, noise, solid waste, radiant energy, and radioactive materials, as well as other pollutants and resources encountered or generated by the Contractor. The Contractor is obligated to consider specified control measures with the costs included within the various contract items of work. - B. Environmental pollution and damage is defined as the presence of chemical, physical, or biological elements or agents which: - 1. Adversely effect human health or welfare, - 2. Unfavorably alter ecological balances of importance to human life, - 3. Effect other species of importance to humankind, or; - 4. Degrade the utility of the environment for aesthetic, cultural, and historical purposes. ## C. Definitions of Pollutants: - Chemical Waste: Petroleum products, bituminous materials, salts, acids, alkalis, herbicides, pesticides, organic chemicals, and inorganic wastes. - 2. Debris: Combustible and noncombustible wastes, such as leaves, tree trimmings, ashes, and waste materials resulting from construction or maintenance and repair work. - 3. Sediment: Soil and other debris that has been eroded and transported by runoff water. - 4. Solid Waste: Rubbish, debris, garbage, and other discarded solid materials resulting from industrial, commercial, and agricultural operations and from community activities. - 5. Surface Discharge: The term "Surface Discharge" implies that the water is discharged with possible sheeting action and subsequent soil erosion may occur. Waters that are surface discharged may terminate in drainage ditches, storm sewers, creeks, and/or "water of the United States" and would require a permit to discharge water from the governing agency. - 6. Rubbish: Combustible and noncombustible wastes such as paper, boxes, glass and crockery, metal and lumber scrap, tin cans, and bones. ## 7. Sanitary Wastes: - a. Sewage: Domestic sanitary sewage and human and animal waste. - b. Garbage: Refuse and scraps resulting from preparation, cooking, dispensing, and
consumption of food. # 1.2 QUALITY CONTROL - A. Establish and maintain quality control for the environmental protection of all items set forth herein. - B. Record on daily reports any problems in complying with laws, regulations, and ordinances. Note any corrective action taken. ## 1.3 REFERENCES - A. The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only. - B. U.S. National Archives and Records Administration (NARA): 33 CFR 328.....Definitions ## 1.4 SUBMITTALS - A. In accordance with Section, 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, furnish the following: - 1. Environmental Protection Plan: After the contract is awarded and prior to the commencement of the work, the Contractor shall meet with the Resident Engineer to discuss the proposed Environmental Protection Plan and to develop mutual understanding relative to details of environmental protection. Not more than 20 days after the meeting, the Contractor shall prepare and submit to the Resident Engineer for approval, a written and/or graphic Environmental Protection Plan including, but not limited to, the following: - a. Name(s) of person(s) within the Contractor's organization who is (are) responsible for ensuring adherence to the Environmental Protection Plan. - b. Name(s) and qualifications of person(s) responsible for manifesting hazardous waste to be removed from the site. - c. Name(s) and qualifications of person(s) responsible for training the Contractor's environmental protection personnel. - d. Description of the Contractor's environmental protection personnel training program. - e. A list of Federal, State, and local laws, regulations, and permits concerning environmental protection, pollution control, noise control and abatement that are applicable to the Contractor's - proposed operations and the requirements imposed by those laws, regulations, and permits. - f. Methods for protection of features to be preserved within authorized work areas including trees, shrubs, vines, grasses, ground cover, landscape features, air and water quality, fish and wildlife, soil, historical, and archeological and cultural resources. - g. Procedures to provide the environmental protection that comply with the applicable laws and regulations. Describe the procedures to correct pollution of the environment due to accident, natural causes, or failure to follow the procedures as described in the Environmental Protection Plan. - h. Permits, licenses, and the location of the solid waste disposal area. - i. Drawings showing locations of any proposed temporary excavations or embankments for haul roads, material storage areas, structures, sanitary facilities, and stockpiles of excess or spoil materials. Include as part of an Erosion Control Plan approved by the District Office of the U.S. Soil Conservation Service and the Department of Veterans Affairs. - j. Environmental Monitoring Plans for the job site including land, water, air, and noise. - k. Work Area Plan showing the proposed activity in each portion of the area and identifying the areas of limited use or nonuse. Plan should include measures for marking the limits of use areas. This plan may be incorporated within the Erosion Control Plan. - B. Approval of the Contractor's Environmental Protection Plan will not relieve the Contractor of responsibility for adequate and continued control of pollutants and other environmental protection measures. ## 1.5 PROTECTION OF ENVIRONMENTAL RESOURCES - A. Protect environmental resources within the project boundaries and those affected outside the limits of permanent work during the entire period of this contract. Confine activities to areas defined by the specifications and drawings. - B. Protection of Land Resources: Prior to construction, identify all land resources to be preserved within the work area. Do not remove, cut, deface, injure, or destroy land resources including trees, shrubs, vines, grasses, top soil, and land forms without permission from the Resident Engineer. Do not fasten or attach ropes, cables, or guys to 01 57 19- 3 trees for anchorage unless specifically authorized, or where special emergency use is permitted. - 1. Work Area Limits: Prior to any construction, mark the areas that require work to be performed under this contract. Mark or fence isolated areas within the general work area that are to be saved and protected. Protect monuments, works of art, and markers before construction operations begin. Convey to all personnel the purpose of marking and protecting all necessary objects. - Protection of Landscape: Protect trees, shrubs, vines, grasses, land forms, and other landscape features shown on the drawings to be preserved by marking, fencing, or using any other approved techniques. - a. Box and protect from damage existing trees and shrubs to remain on the construction site. - b. Immediately repair all damage to existing trees and shrubs by trimming, cleaning, and painting with antiseptic tree paint. - c. Do not store building materials or perform construction activities closer to existing trees or shrubs than the farthest extension of their limbs. - 3. Reduction of Exposure of Unprotected Erodible Soils: Plan and conduct earthwork to minimize the duration of exposure of unprotected soils. Clear areas in reasonably sized increments only as needed to use. Form earthwork to final grade as shown. Immediately protect side slopes and back slopes upon completion of rough grading. - 4. Temporary Protection of Disturbed Areas: Construct diversion ditches, benches, and berms to retard and divert runoff from the construction site to protected drainage areas approved under paragraph 208 of the Clean Water Act. - a. Sediment Basins: Trap sediment from construction areas in temporary or permanent sediment basins that accommodate the runoff of a local design year) storm. After each storm, pump the basins dry and remove the accumulated sediment. Control overflow/drainage with paved weirs or by vertical overflow pipes, draining from the surface. - b. Reuse or conserve the collected topsoil sediment as directed by the Resident Engineer. Topsoil use and requirements are specified in Section 31 20 00, EARTH MOVING. - c. Institute effluent quality monitoring programs as required by Federal, State, and local environmental agencies. - 5. Erosion and Sedimentation Control Devices: The erosion and sediment controls selected and maintained by the Contractor shall be such that water quality standards are not violated as a result of the Contractor's activities. Construct or install all temporary and permanent erosion and sedimentation control features on the Environmental Protection Plan. Maintain temporary erosion and sediment control measures such as berms, dikes, drains, sedimentation basins, grassing, and mulching, until permanent drainage and erosion control facilities are completed and operative. - 6. Manage borrow areas on Government property to minimize erosion and to prevent sediment from entering nearby water courses or lakes. - 7. Manage and control spoil areas on Government property to limit spoil to areas on the Environmental Protection Plan and prevent erosion of soil or sediment from entering nearby water courses or lakes. - 8. Protect adjacent areas from despoilment by temporary excavations and embankments. - 9. Handle and dispose of solid wastes in such a manner that will prevent contamination of the environment. Place solid wastes (excluding clearing debris) in containers that are emptied on a regular schedule. Transport all solid waste off Government property and dispose of waste in compliance with Federal, State, and local requirements. - 10. Store chemical waste away from the work areas in corrosion resistant containers and dispose of waste in accordance with Federal, State, and local regulations. - 11. Handle discarded materials other than those included in the solid waste category as directed by the Resident Engineer. - C. Protection of Water Resources: Keep construction activities under surveillance, management, and control to avoid pollution of surface and ground waters and sewer systems. Implement management techniques to control water pollution by the listed construction activities that are included in this contract. - 1. Washing and Curing Water: Do not allow wastewater directly derived from construction activities to enter water areas. Collect and place wastewater in retention ponds allowing the suspended material to settle, the pollutants to separate, or the water to evaporate. - 2. Control movement of materials and equipment at stream crossings during construction to prevent violation of water pollution control standards of the Federal, State, or local government. - 3. Monitor water areas affected by construction. - D. Protection of Fish and Wildlife Resources: Keep construction activities under surveillance, management, and control to minimize interference with, disturbance of, or damage to fish and wildlife. Prior to beginning construction operations, list species that require specific attention along with measures for their protection. - E. Protection of Air Resources: Keep construction activities under surveillance, management, and control to minimize pollution of air resources. Burning is not permitted on the job site. Keep activities, equipment, processes, and work operated or performed, in strict accordance with the State of Wisconsin and Federal emission and performance laws and standards. Maintain ambient air quality standards set by the Environmental Protection Agency, for those construction operations and activities specified. - Particulates: Control dust particles, aerosols, and gaseous byproducts from all construction activities, processing, and preparation of materials (such as from asphaltic batch plants) at all times, including weekends, holidays, and hours when work is not in progress. - 2. Particulates Control:
Maintain all excavations, stockpiles, haul roads, permanent and temporary access roads, plant sites, spoil areas, borrow areas, and all other work areas within or outside the project boundaries free from particulates which would cause a hazard or a nuisance. Sprinklering, chemical treatment of an approved type, light bituminous treatment, baghouse, scrubbers, electrostatic precipitators, or other methods are permitted to control particulates in the work area. - 3. Hydrocarbons and Carbon Monoxide: Control monoxide emissions from equipment to Federal and State allowable limits. - 4. Odors: Control odors of construction activities and prevent obnoxious odors from occurring. - F. Reduction of Noise: Minimize noise using every action possible. Perform noise-producing work in less sensitive hours of the day or week as directed by the Resident Engineer. Maintain noise-produced work at or below the decibel levels and within the time periods specified. - 1. Perform construction activities involving repetitive, high-level impact noise only between 8:00 a.m. and 4:30:00p.m unless otherwise permitted by local ordinance or the Resident Engineer. Repetitive impact noise on the property shall not exceed the following dB limitations: 01 57 19- 6 | Time Duration of Impact Noise | Sound Level in dB | | |-------------------------------------|-------------------|--| | More than 12 minutes in any hour | 70 | | | Less than 30 seconds of any hour | 85 | | | Less than three minutes of any hour | 80 | | | Less than 12 minutes of any hour | 75 | | - 2. Provide sound-deadening devices on equipment and take noise abatement measures that are necessary to comply with the requirements of this contract, consisting of, but not limited to, the following: - a. Maintain maximum permissible construction equipment noise levels at 15 m (50 feet) (dBA): | EARTHMOVIN | G | MATERIALS HANDLING | | |-----------------------|----|--------------------|----| | FRONT LOADERS | 75 | CONCRETE MIXERS | 75 | | BACKHOES | 75 | CONCRETE PUMPS | 75 | | DOZERS | 75 | CRANES | 75 | | TRACTORS | 75 | DERRICKS IMPACT | 75 | | SCAPERS | 80 | PILE DRIVERS | 95 | | GRADERS | 75 | JACK HAMMERS | 75 | | TRUCKS | 75 | ROCK DRILLS | 80 | | PAVERS,
STATIONARY | 80 | PNEUMATIC TOOLS | 80 | | PUMPS | 75 | | | | GENERATORS | 75 | SAWS | 75 | | COMPRESSORS | 75 | VIBRATORS | 75 | - b. Use shields or other physical barriers to restrict noise transmission. - c. Provide soundproof housings or enclosures for noise-producing machinery. - d. Use efficient silencers on equipment air intakes. - e. Use efficient intake and exhaust mufflers on internal combustion engines that are maintained so equipment performs below noise levels specified. - f. Line hoppers and storage bins with sound deadening material. - g. Conduct truck loading, unloading, and hauling operations so that noise is kept to a minimum. - 3. Measure sound level for noise exposure due to the construction at least once every five successive working days while work is being performed above 55 dB(A) noise level. Measure noise exposure at the property line or 15 m (50 feet) from the noise source, whichever is greater. Measure the sound levels on the \underline{A} weighing network of a General Purpose sound level meter at slow response. To minimize the effect of reflective sound waves at buildings, take measurements at 900 to 1800 mm (three to six feet) in front of any building face. Submit the recorded information to the Resident Engineer noting any problems and the alternatives for mitigating actions. - G. Restoration of Damaged Property: If any direct or indirect damage is done to public or private property resulting from any act, omission, neglect, or misconduct, the Contractor shall restore the damaged property to a condition equal to that existing before the damage at no additional cost to the Government. Repair, rebuild, or restore property as directed or make good such damage in an acceptable manner. - H. Final Clean-up: On completion of project and after removal of all debris, rubbish, and temporary construction, Contractor shall leave the construction area in a clean condition satisfactory to the Resident Engineer. Cleaning shall include off the station disposal of all items and materials not required to be salvaged, as well as all debris and rubbish resulting from demolition and new work operations. - - - E N D - - - # SECTION 01 74 19 CONSTRUCTION WASTE MANAGEMENT ## PART 1 - GENERAL #### 1.1 DESCRIPTION - A. This section specifies the requirements for the management of nonhazardous building construction and demolition waste. - B. Waste disposal in landfills shall be minimized to the greatest extent possible. Of the inevitable waste that is generated, as much of the waste material as economically feasible shall be salvaged, recycled or reused. - C. Contractor shall use all reasonable means to divert construction and demolition waste from landfills and incinerators, and facilitate their salvage and recycle not limited to the following: - 1. Waste Management Plan development and implementation. - 2. Techniques to minimize waste generation. - 3. Sorting and separating of waste materials. - 4. Salvage of existing materials and items for reuse or resale. - 5. Recycling of materials that cannot be reused or sold. - D. At a minimum the following waste categories shall be diverted from landfills: - 1. Soil. - 2. Inerts (eg, concrete, masonry and asphalt). - 3. Clean dimensional wood and palette wood. - 4. Green waste (biodegradable landscaping materials). - Engineered wood products (plywood, particle board and I-joists, etc). - 6. Metal products (eg, steel, wire, beverage containers, copper, etc). - 7. Cardboard, paper and packaging. - 8. Bitumen roofing materials. - 9. Plastics (eg, ABS, PVC). - 10. Carpet and/or pad. - 11. Gypsum board. - 12. Insulation. - 13. Paint. - 14. Fluorescent lamps. # 1.2 RELATED WORK A. Section 02 41 00, DEMOLITION. B. Section 01 00 00, GENERAL REQUIREMENTS. ## 1.3 QUALITY ASSURANCE - A. Contractor shall practice efficient waste management when sizing, cutting and installing building products. Processes shall be employed to ensure the generation of as little waste as possible. Construction /Demolition waste includes products of the following: - 1. Excess or unusable construction materials. - 2. Packaging used for construction products. - 3. Poor planning and/or layout. - 4. Construction error. - 5. Over ordering. - 6. Weather damage. - 7. Contamination. - 8. Mishandling. - 9. Breakage. - B. Establish and maintain the management of non-hazardous building construction and demolition waste set forth herein. Conduct a site assessment to estimate the types of materials that will be generated by demolition and construction. - C. Contractor shall develop and implement procedures to recycle construction and demolition waste to a minimum of 50 percent. - D. Contractor shall be responsible for implementation of any special programs involving rebates or similar incentives related to recycling. Any revenues or savings obtained from salvage or recycling shall accrue to the contractor. - E. Contractor shall provide all demolition, removal and legal disposal of materials. Contractor shall ensure that facilities used for recycling, reuse and disposal shall be permitted for the intended use to the extent required by local, state, federal regulations. The Whole Building Design Guide website http://www.wbdg.org/tools/cwm.php provides a Construction Waste Management Database that contains information on companies that haul, collect, and process recyclable debris from construction projects. - F. Contractor shall assign a specific area to facilitate separation of materials for reuse, salvage, recycling, and return. Such areas are to be kept neat and clean and clearly marked in order to avoid contamination or mixing of materials. 01 74 19 - 2 - G. Contractor shall provide on-site instructions and supervision of separation, handling, salvaging, recycling, reuse and return methods to be used by all parties during waste generating stages. - H. Record on daily reports any problems in complying with laws, regulations and ordinances with corrective action taken. ## 1.4 TERMINOLOGY - A. Class III Landfill: A landfill that accepts non-hazardous resources such as household, commercial and industrial waste resulting from construction, remodeling, repair and demolition operations. - B. Clean: Untreated and unpainted; uncontaminated with adhesives, oils, solvents, mastics and like products. - C. Construction and Demolition Waste: Includes all non-hazardous resources resulting from construction, remodeling, alterations, repair and demolition operations. - D. Dismantle: The process of parting out a building in such a way as to preserve the usefulness of its materials and components. - E. Disposal: Acceptance of solid wastes at a legally operating facility for the purpose of land filling (includes Class III landfills and inert fills). - F. Inert Backfill Site: A location, other than inert fill or other disposal facility, to which inert materials are taken for the purpose of filling an excavation, shoring or other soil engineering operation. - G. Inert Fill: A facility that can legally accept inert waste, such as asphalt and concrete exclusively for the purpose of disposal. - H. Inert Solids/Inert Waste: Non-liquid solid resources including, but not limited to, soil and concrete that does not contain hazardous waste or soluble pollutants at concentrations in excess of water-quality objectives established by a regional water board, and does not contain significant quantities of decomposable solid resources. - I. Mixed Debris: Loads that include commingled recyclable and non-recyclable materials generated at the construction site. - J. Mixed Debris Recycling Facility: A solid resource processing facility that accepts loads of mixed construction and demolition debris for the purpose of recovering re-usable and recyclable materials
and disposing non-recyclable materials. - K. Permitted Waste Hauler: A company that holds a valid permit to collect and transport solid wastes from individuals or businesses for the purpose of recycling or disposal. - L. Recycling: The process of sorting, cleansing, treating, and reconstituting materials for the purpose of using the altered form in the manufacture of a new product. Recycling does not include burning, incinerating or thermally destroying solid waste. - 1. On-site Recycling Materials that are sorted and processed on site for use in an altered state in the work, i.e. concrete crushed for use as a sub-base in paving. - 2. Off-site Recycling Materials hauled to a location and used in an altered form in the manufacture of new products. - M. Recycling Facility: An operation that can legally accept materials for the purpose of processing the materials into an altered form for the manufacture of new products. Depending on the types of materials accepted and operating procedures, a recycling facility may or may not be required to have a solid waste facilities permit or be regulated by the local enforcement agency. - N. Reuse: Materials that are recovered for use in the same form, on-site or off-site. - O. Return: To give back reusable items or unused products to vendors for credit. - P. Salvage: To remove waste materials from the site for resale or re-use by a third party. - Q. Source-Separated Materials: Materials that are sorted by type at the site for the purpose of reuse and recycling. - R. Solid Waste: Materials that have been designated as non-recyclable and are discarded for the purposes of disposal. - S. Transfer Station: A facility that can legally accept solid waste for the purpose of temporarily storing the materials for re-loading onto other trucks and transporting them to a landfill for disposal, or recovering some materials for re-use or recycling. # 1.5 SUBMITTALS A. In accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES, furnish the following: - B. Prepare and submit to the Resident Engineer a written demolition debris management plan. The plan shall include, but not be limited to, the following information: - 1. Procedures to be used for debris management. - 2. Techniques to be used to minimize waste generation. - 3. Analysis of the estimated job site waste to be generated: - a. List of each material and quantity to be salvaged, reused, recycled. - b. List of each material and quantity proposed to be taken to a landfill. - 4. Detailed description of the Means/Methods to be used for material handling. - a. On site: Material separation, storage, protection where applicable. - b. Off site: Transportation means and destination. Include list of materials. - 1) Description of materials to be site-separated and self-hauled to designated facilities. - 2) Description of mixed materials to be collected by designated waste haulers and removed from the site. - c. The names and locations of mixed debris reuse and recycling facilities or sites. - d. The names and locations of trash disposal landfill facilities or - e. Documentation that the facilities or sites are approved to receive the materials. - C. Designated Manager responsible for instructing personnel, supervising, documenting and administer over meetings relevant to the Waste Management Plan. - D. Monthly summary of construction and demolition debris diversion and disposal, quantifying all materials generated at the work site and disposed of or diverted from disposal through recycling. # 1.6 APPLICABLE PUBLICATIONS A Publications listed below form a part of this specification to the extent referenced. Publications are referenced by the basic designation only. In the event that criteria requirements conflict, the most stringent requirements shall be met. B. U.S. Green Building Council (USGBC): LEED Green Building Rating System for New Construction #### 1.7 RECORDS Maintain records to document the quantity of waste generated; the quantity of waste diverted through sale, reuse, or recycling; and the quantity of waste disposed by landfill or incineration. Records shall be kept in accordance with the LEED Reference Guide and LEED Template. #### PART 2 - PRODUCTS #### 2.1 MATERIALS - A. List of each material and quantity to be salvaged, recycled, reused. - B. List of each material and quantity proposed to be taken to a landfill. - C. Material tracking data: Receiving parties, dates removed, transportation costs, weight tickets, tipping fees, manifests, invoices, net total costs or savings. # PART 3 - EXECUTION #### 3.1 COLLECTION - A. Provide all necessary containers, bins and storage areas to facilitate effective waste management. - B. Clearly identify containers, bins and storage areas so that recyclable materials are separated from trash and can be transported to respective recycling facility for processing. - C. Hazardous wastes shall be separated, stored, disposed of according to local, state, federal regulations. # 3.2 DISPOSAL - A. Contractor shall be responsible for transporting and disposing of materials that cannot be delivered to a source-separated or mixed materials recycling facility to a transfer station or disposal facility that can accept the materials in accordance with state and federal regulations. - B. Construction or demolition materials with no practical reuse or that cannot be salvaged or recycled shall be disposed of at a landfill or incinerator. ## 3.3 REPORT A. With each application for progress payment, submit a summary of construction and demolition debris diversion and disposal including beginning and ending dates of period covered. - B. Quantify all materials diverted from landfill disposal through salvage or recycling during the period with the receiving parties, dates removed, transportation costs, weight tickets, manifests, invoices. Include the net total costs or savings for each salvaged or recycled material. - C. Quantify all materials disposed of during the period with the receiving parties, dates removed, transportation costs, weight tickets, tipping fees, manifests, invoices. Include the net total costs for each disposal. E N D # SECTION 02 41 00 DEMOLITION # PART 1 - GENERAL ## 1.1 DESCRIPTION: This section specifies demolition and removal of buildings, portions of buildings, utilities, other structures and debris from trash dumps shown. ## 1.2 RELATED WORK: - A. Demolition and removal of roads, walks, curbs, and on-grade slabs outside buildings to be demolished: Section 31 20 11, EARTH MOVING (SHORT FORM). - B. Disconnecting utility services prior to demolition: Section 01 00 00, GENERAL REQUIREMENTS. - C. Reserved items that are to remain the property of the Government: Section 01 00 00, GENERAL REQUIREMENTS. - D. Environmental Protection: Section 01 57 19, TEMPORARY ENVIRONMENTAL - E. Construction Waste Management: Section 017419 CONSTRUCTION WASTE MANAGEMENT. - F. Infectious Control: Section 01 00 00, GENERAL REQUIREMENTS, Article 1.7, INFECTION PREVENTION MEASURES. #### 1.3 PROTECTION: - A. Perform demolition in such manner as to eliminate hazards to persons and property; to minimize interference with use of adjacent areas, utilities and structures or interruption of use of such utilities; and to provide free passage to and from such adjacent areas of structures. Comply with requirements of GENERAL CONDITIONS Article, ACCIDENT PREVENTION. - B. Provide safeguards, including warning signs, barricades, temporary fences, warning lights, and other similar items that are required for protection of all personnel during demolition and removal operations. Comply with requirements of Section 01 00 00, GENERAL REQUIREMENTS, Article PROTECTION OF EXISTING VEGETATION, STRUCTURES, EQUIPMENT, UTILITIES AND IMPROVEMENTS. - C. Maintain fences, barricades, lights, and other similar items around exposed excavations until such excavations have been completely filled. - D. Provide enclosed dust chutes with control gates from each floor to carry debris to truck beds and govern flow of material into truck. Provide overhead bridges of tight board or prefabricated metal construction at dust chutes to protect persons and property from falling debris. - E. Prevent spread of flying particles and dust. Sprinkle rubbish and debris with water to keep dust to a minimum. Do not use water if it results in hazardous or objectionable condition such as, but not limited to; ice, flooding, or pollution. Vacuum and dust the work area daily. . - F. In addition to previously listed fire and safety rules to be observed in performance of work, include following: - 1. No wall or part of wall shall be permitted to fall outwardly from structures. - 2. Maintain at least one stairway in each structure in usable condition to highest remaining floor. Keep stairway free of obstructions and debris until that level of structure has been removed. - 3. Wherever a cutting torch or other equipment that might cause a fire is used, provide and maintain fire extinguishers nearby ready for immediate use. Instruct all possible users in use of fire extinguishers. - 4. Keep hydrants clear and accessible at all times. Prohibit debris from accumulating within a radius of 4500 mm (15 feet) of fire hydrants. - G. Before beginning any demolition work, the Contractor shall survey the site and examine the drawings and specifications to determine the extent of the work. The contractor shall take necessary precautions to avoid damages to existing items to remain in place, to be reused, or to remain the property of the Medical Center; any damaged items shall be repaired or replaced as approved by the Resident Engineer. The Contractor shall coordinate the work of this section with all other work and shall construct and maintain shoring, bracing, and supports as required. The Contractor shall ensure that structural elements are not overloaded and shall be responsible for increasing structural supports or adding new supports as may be required as a result
of any cutting, removal, or demolition work performed under this contract. Do not overload structural elements. Provide new supports and reinforcement for existing construction weakened by demolition or removal works. Repairs, reinforcement, or structural replacement must have Resident Engineer's approval. - H. The work shall comply with the requirements of Section 01 57 19, TEMPORARY ENVIRONMENTAL CONTROLS. - I. The work shall comply with the requirements of Section 01 00 00, GENERAL REQUIREMENTS, Article 1.7 INFECTION PREVENTION MEASURES. ## 1.4 UTILITY SERVICES: - A. Demolish and remove outside utility service lines shown to be removed. - B. Remove abandoned outside utility lines that would interfere with installation of new utility lines and new construction. # PART 2 - PRODUCTS (NOT USED) ## PART 3 - EXECUTION #### 3.1 DEMOLITION: - A. Completely demolish and remove buildings and structures, including all appurtenances related or connected thereto, as noted below: - 1. As required for installation of new utility service lines. - 2. To full depth within an area defined by hypothetical lines located 1500 mm (5 feet) outside building lines of new structures. - B. Debris, including brick, concrete, stone, metals and similar materials shall become property of Contractor and shall be disposed of by him daily, off the Medical Center to avoid accumulation at the demolition site. Materials that cannot be removed daily shall be stored in areas specified by the Resident Engineer. Break up concrete slabs below grade that do not require removal from present location into pieces not exceeding 600 mm (24 inches) square to permit drainage. Contractor shall dispose debris in compliance with applicable federal, state or local permits, rules and/or regulations. - C. In removing buildings and structures of more than two stories, demolish work story by story starting at highest level and progressing down to third floor level. Demolition of first and second stories may proceed simultaneously. - D. Remove and legally dispose of all materials, other than earth to remain as part of project work, from any trash dumps shown. Materials removed shall become property of contractor and shall be disposed of in compliance with applicable federal, state or local permits, rules and/or regulations All materials in the indicated trash dump areas, including above surrounding grade and extending to a depth of 1500mm (5feet) below surrounding grade, shall be included as part of the lump sum compensation for the work of this section. Materials that are located beneath the surface of the surrounding ground more than 1500 mm (5 feet), or materials that are discovered to be hazardous, shall be handled as unforeseen. The removal of hazardous material shall be referred to Hazardous Materials specifications. E. Remove existing utilities as indicated or uncovered by work and terminate in a manner conforming to the nationally recognized code covering the specific utility and approved by the Resident Engineer. When Utility lines are encountered that are not indicated on the drawings, the Resident Engineer shall be notified prior to further work in that area. # 3.2 CLEAN-UP: On completion of work of this section and after removal of all debris, leave site in clean condition satisfactory to Resident Engineer. Clean-up shall include off the Medical Center disposal of all items and materials not required to remain property of the Government as well as all debris and rubbish resulting from demolition operations. - - - E N D - - - # ECTION 03 30 53 CAST-IN-PLACE CONCRETE #### PART 1 - GENERAL ## 1.1 DESCRIPTION: This section specifies cast-in-place structural concrete and material and mixes for other concrete. ## 1.2 RELATED WORK: A. Materials testing and inspection during construction: See this specification. # 1.3 TOLERANCES: A. ACI 117. # 1.4 REGULATORY REQUIREMENTS: - A. ACI SP-66 ACI Detailing Manual - B. ACI 318 Building Code Requirements for Reinforced Concrete. ## 1.5 SUBMITTALS: - A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. - B. Concrete Mix Design. - C. Shop Drawings: Reinforcing steel: Complete shop drawings. - D. Manufacturer's Certificates: Air-entraining admixture, chemical admixtures, curing compounds. # 1.6 APPLICABLE PUBLICATIONS: - A. Publications listed below form a part of this specification to extent referenced. Publications are referenced in text by basic designation only. - B. American Concrete Institute (ACI): | 117R-10Tolerances for Concrete Construction and | | | |--|---|--| | Materials | | | | 211.1-91(R2009)Proportions for Normal, Heavyweight, and Mass | | | | Concrete | | | | 211.2-98(R2004)Proportions for Structural Lightweight Concrete | : | | | 301-11Specification for Structural Concrete | | | | 305R-10Hot Weather Concreting | | | | 306R-10Cold Weather Concreting | | | | SP-66-04ACI Detailing Manual | | | | 318/318R-11Building Code Requirements for Reinforced | | | 03 30 53 - 1 Concrete | | 347R-08Guide to Formwork for Concrete | |----|--| | C. | American Society for Testing And Materials (ASTM): | | | A185-07Steel Welded Wire, Fabric, Plain for Concrete | | | Reinforcement | | | A615/A615M-09Deformed and Plain Billet-Steel Bars for | | | Concrete Reinforcement | | | A996/A996M-09Standard Specification for Rail-Steel and Axle- | | | Steel Deformed Bars for Concrete Reinforcement | | | C31/C31M-10Making and Curing Concrete Test Specimens in the | | | Field | | | C33-11Concrete Aggregates | | | C39/C39M-10Compressive Strength of Cylindrical Concrete | | | Specimens | | | C94/C94M-10Ready-Mixed Concrete | | | C143/C143M-10Standard Test Method for Slump of Hydraulic | | | Cement Concrete | | | C150-09Portland Cement | | | C171-07Sheet Material for Curing Concrete | | | C172-10Sampling Freshly Mixed Concrete | | | C173-10Air Content of Freshly Mixed Concrete by the | | | Volumetric Method | | | C192/C192M-07Making and Curing Concrete Test Specimens in the | | | Laboratory | | | C231-10Air Content of Freshly Mixed Concrete by the | | | Pressure Method | | | C260-10Air-Entraining Admixtures for Concrete | | | C330-09Lightweight Aggregates for Structural Concrete | | | C494/C494M-10Chemical Admixtures for Concrete | | | C618-08Coal Fly Ash and Raw or Calcined Natural | | | Pozzolan for Use in Concrete | | | D1751-08Preformed Expansion Joint Fillers for Concrete | | | Paving and Structural Construction (Non- | | | extruding and Resilient Bituminous Types) | | | D4397-10Polyethylene Sheeting for Construction, | | | Industrial and Agricultural Applications | | | E1155-96(2008)Determining F_F Floor Flatness and F_L Floor | | | Levelness Numbers | #### PART 2 - PRODUCTS #### 2.1 FORMS: Wood, plywood, metal, or other materials, approved by Resident Engineer, of grade or type suitable to obtain type of finish specified. #### 2.2 MATERIALS: - A. Portland Cement: ASTM C150, Type I or II. - B. Fly Ash: ASTM C618, Class C or F including supplementary optional requirements relating to reactive aggregates and alkalis, and loss on ignition (LOI) not to exceed 5 percent. - C. Coarse Aggregate: ASTM C33, Size 67. Size 467 may be used for footings and walls over 300 mm (12 inches) thick. Coarse aggregate for applied topping and metal pan stair fill shall be Size 7. - D. Fine Aggregate: ASTM C33. - E. Mixing Water: Fresh, clean, and potable. - F. Air-Entraining Admixture: ASTM C260. - G. Chemical Admixtures: ASTM C494. - H. Reinforcing Steel: ASTM A615 or ASTM A996, deformed. See structural drawings for grade. - I. Welded Wire Fabric: ASTM A185 - K. Expansion Joint Filler: ASTM D1751 #### 2.3 CONCRETE MIXES: - A. Design of concrete mixes using materials specified shall be the responsibility of the Contractor as set forth under Option C of ASTM ${\tt C94.}$ - B. Compressive strength at 28 days shall be not less than 30 Mpa 4000 psi - C. Establish strength of concrete by testing prior to beginning concreting operation. Test consists of average of three cylinders made and cured in accordance with ASTM C192 and tested in accordance with ASTM C39. - D. Maximum slump for vibrated concrete is 100 mm (4 inches) tested in accordance with ASTM C143. - E. Cement and water factor (See Table I): TABLE I - CEMENT AND WATER FACTORS FOR CONCRETE | Concrete: Strength | Non-Air-Entrained | | Air-Entrained | | |--|------------------------------------|----------------------------|-------------------------------------|----------------------------| | Min. 28 Day Comp.
Str.
MPa (psi) | Min. Cement
kg/m³(lbs/c.
yd) | Max. Water
Cement Ratio | Min. Cement
kg/m³
(lbs/c. yd) | Max. Water
Cement Ratio | | 35 (5000) ^{1,3} | 375 (630) | 0.45 | 385 (650) | 0.40 | | 30 (4000) ^{1,3} | 325 (550) | 0.55 | 340 (570) | 0.50 | |--------------------------|-----------|------|-----------|------| | 25 (3000) ^{1,3} | 280 (470) | 0.65 | 290 (490) | 0.55 | | 25 (3000) ^{1,2} | 300 (500) | * | 310 (520) | * | - 1. If trial mixes are used, the proposed mix design shall achieve a compressive strength 8.3 MPa (1200 psi) in excess of f'c. For concrete strengths above 35 Mpa (5000 psi), the proposed mix design shall achieve a compressive strength 9.7 MPa (1400 psi) in excess of f'c. - 2. For concrete exposed to high sulfate content soils maximum water cement ratio is 0.44. - * Determined by Laboratory in accordance with ACI 211.1 for normal concrete or ACI 211.2 for lightweight structural concrete. - F. Air-entrainment is required for all exterior concrete and as required for Section 32 05 23, CEMENT AND CONCRETE FOR EXTERIOR IMPROVEMENTS. Air content shall conform with the following table: TABLE I - TOTAL AIR CONTENT FOR VARIOUS SIZES OF COARSE AGGREGATES (NORMAL CONCRETE) | Nominal Maximum Size of | Total Air Content | |-------------------------
----------------------| | Coarse Aggregate | Percentage by Volume | | 10 mm (3/8 in) | 6 to 10 | | 13 mm (1/2 in) | 5 to 9 | | 19 mm (3/4 in) | 4 to 8 | | 25 mm (1 in) | 3 1/2 to 6 1/2 | | 40 mm (1 1/2 in) | 3 to 6 | # 2.4 BATCHING & MIXING: - A. Store, batch, and mix materials as specified in ASTM C94. - 1. Job-Mixed: Concrete mixed at job site shall be mixed in a batch mixer in manner specified for stationary mixers in ASTM C94. - 2. Ready-Mixed: Ready-mixed concrete comply with ASTM C94, except use of non-agitating equipment for transporting concrete to the site will not be permitted. With each load of concrete delivered to project, ready-mixed concrete producer shall furnish, in duplicate, certification as required by ASTM C94. - 3. Mixing structural lightweight concrete: Charge mixer with 2/3 of total mixing water and all of the aggregate. Mix ingredients for not less than 30 seconds in a stationary mixer or not less than 10 revolutions at mixing speed in a truck mixer. Add remaining mixing water and other ingredients and continue mixing. Above procedure may be modified as recommended by aggregate producer. ## PART 3 - EXECUTION #### 3.1 FORMWORK: - A. Installation conform to ACI 347. Sufficiently tight to hold concrete without leakage, sufficiently braced to withstand vibration of concrete, and to carry, without appreciable deflection, all dead and live loads to which they may be subjected. - B. Treating and Wetting: Treat or wet contact forms as follows: - Coat plywood and board forms with non-staining form sealer. In hot weather cool forms by wetting with cool water just before concrete is placed. - 2. Clean and coat removable metal forms with light form oil before reinforcement is placed. In hot weather cool metal forms by thoroughly wetting with water just before placing concrete. - 3. Use sealer on reused plywood forms as specified for new material. - C. Inserts, sleeves, and similar items: Flashing reglets, masonry ties, anchors, inserts, wires, hangers, sleeves, boxes for floor hinges and other items specified as furnished under this and other sections of specifications and required to be in their final position at time concrete is placed shall be properly located, accurately positioned and built into construction, and maintained securely in place. ## D. Construction Tolerances: - 1. Contractor is responsible for setting and maintaining concrete formwork to assure erection of completed work within tolerances specified to accommodate installation or other rough and finish materials. Remedial work necessary for correcting excessive tolerances is the responsibility of the Contractor. Erected work that exceeds specified tolerance limits shall be remedied or removed and replaced, at no additional cost to the Government. - 2. Permissible surface irregularities for various classes of materials are defined as "finishes" in specification sections covering individual materials. They are to be distinguished from tolerances specified which are applicable to surface irregularities of structural elements. #### 3.2 REINFORCEMENT: Details of concrete reinforcement, unless otherwise shown, in accordance with ACI 318 and ACI SP-66. Support and securely tie reinforcing steel to prevent displacement during placing of concrete. ## 3.3 PLACING CONCRETE: - A. Remove water from excavations before concrete is placed. Remove hardened concrete, debris and other foreign materials from interior of forms, and from inside of mixing and conveying equipment. Obtain approval of Resident Engineer before placing concrete. Provide screeds at required elevations for concrete slabs. - B. Before placing new concrete on or against concrete which has set, existing surfaces shall be roughened and cleaned free from all laitance, foreign matter, and loose particles. - C. Convey concrete from mixer to final place of deposit by method which will prevent segregation or loss of ingredients. Do not deposit in work concrete that has attained its initial set or has contained its water or cement more than 1 1/2 hours. Do not allow concrete to drop freely more than 1500 mm (5 feet) in unexposed work nor more than 900 mm (3 feet) in exposed work. Place and consolidate concrete in horizontal layers not exceeding 300 mm (12 inches) in thickness. Consolidate concrete by spading, rodding, and mechanical vibrator. Do not secure vibrator to forms or reinforcement. Vibration shall be carried on continuously with placing of concrete. - D. Hot weather placing of concrete: Follow recommendations of ACI 305R to prevent problems in the manufacturing, placing, and curing of concrete that can adversely affect the properties and serviceability of the hardened concrete. - E. Cold weather placing of concrete: Follow recommendations of ACI 306R, to prevent freezing of thin sections less than 300 mm (12 inches) and to permit concrete to gain strength properly, except that use of calcium chloride shall not be permitted without written approval from Resident Engineer. ## 3.4 PROTECTION AND CURING: Protect exposed surfaces of concrete from premature drying, wash by rain or running water, wind, mechanical injury, and excessively hot or cold temperature. Curing method shall be subject to approval by Resident Engineer. #### 3.5 FORM REMOVAL: Forms remain in place until concrete has a sufficient strength to carry its own weight and loads supported. Removal of forms at any time is the Contractor's sole responsibility. ## 3.6 SURFACE PREPARATION: Immediately after forms have been removed and work has been examined and approved by Resident Engineer, remove loose materials, and patch all stone pockets, surface honeycomb, or similar deficiencies with cement mortar made with 1 part portland cement and 2 to 3 parts sand. #### 3.7 FINISHES: ## A. Slab Finishes: - 1. Scratch Finish: Slab surfaces to receive a bonded applied cementitious application shall all be thoroughly raked or wire broomed after partial setting (within 2 hours after placing) to roughen surface to insure a permanent bond between base slab and applied cementitious materials. - 2. Floating: Allow water brought to surface by float used for rough finishing to evaporate before surface is again floated or troweled. Do not sprinkle dry cement on surface to absorb water. - 3. Float Finish: Ramps, stair treads, and platforms, both interior and exterior, equipment pads, and slabs to receive non-cementitious materials, except as specified, shall be screened and floated to a smooth dense finish. After first floating, while surface is still soft, surfaces shall be checked for alignment using a straightedge or template. Correct high spots by cutting down with a trowel or similar tool and correct low spots by filling in with material of same composition as floor finish. Remove any surface projections on floated finish by rubbing or dry grinding. Refloat the slab to a uniform sandy texture. - 4. Steel Trowel Finish: Applied toppings, concrete surfaces to receive resilient floor covering or carpet, future floor roof and all monolithic concrete floor slabs exposed in finished work and for which no other finish is shown or specified shall be steel troweled. Final steel troweling to secure a smooth, dense surface shall be delayed as long as possible, generally when the surface can no longer be dented with finger. During final troweling, tilt steel trowel at a slight angle and exert heavy pressure on trowel to compact cement paste and form a dense, smooth surface. Finished surface shall be free of trowel marks, uniform in texture and appearance. Broom Finish: > Finish all exterior slabs, ramps, and stair treads with a bristle brush moistened with clear water after the surfaces have been floated. > > - - - E N D - - - 03 30 53 - 8 ## SECTION 05 31 00 STEEL DECKING #### PART 1 - GENERAL #### 1.1 DESCRIPTION: This section specifies material and services required for installation of steel decking as shown and specified. #### 1.2 RELATED WORK: - A. Materials testing and inspection during construction: Section 01 45 29, TESTING LABORATORY SERVICES. - B. Finish Painting: Section 09 91 00, PAINTING. ## 1.3 DESIGN REQUIREMENTS: - A. Design steel decking in accordance with AISI publication, "Specification for the Design of Cold-formed Steel Structural Members" except as otherwise shown or specified. - B. Design all elements with the latest published version of applicable codes. ### 1.4 SUBMITTALS: - A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. - B. Shop Drawings: Shop and erection drawings showing decking unit layout, connections to supporting members, and similar information necessary for completing installation as shown and specified, including supplementary framing, sump pans, ridge and valley plates, cant strips, cut openings, special jointing or other accessories. Show welding, side lap, closure, deck reinforcing and closure reinforcing details. Show openings required for work of other trades, including openings not shown on structural drawings. Indicate where temporary shoring is required to satisfy design criteria. - C. Manufacturer's Literature and Data: Showing steel decking section properties and specifying structural characteristics. - D. Certification: For each type and gauge of metal deck supporting concrete slab or fill, furnish certification of the specified fire ratings. Certify that the units supplied are U.L. listed as a "Steel Floor and Form Unit". E. Insurance Certification: Assist the Government in preparation and submittal of roof installation acceptance certification as may be necessary in connection with fire and extended coverage insurance. # 1.5 QUALITY ASSURANCE: A. Underwriters' Label: Provide metal floor deck units listed in Underwriters' Laboratories "Fire Resistance Directory", with each deck unit bearing the UL label and marking for specific system detailed. ### 1.6 APPLICABLE PUBLICATIONS: - A. Publications listed below form a part of this specification to extent
referenced. Publications are referenced in text by basic designation only. - B. American Society for Testing and Materials (ASTM): A36/A36M-08......Standard Specification for Carbon Structural Steel - ASTM A1008/A1008M-12....Standard Specification for Steel, Sheet, Cold-Rolled, Carbon, Structural, High-Strength Low-Alloy, High-Strength Low-Alloy with Improved Formability, Solution Hardened, and Bake Hardenable. - A653/A653M-11.....Standard Specification for Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvanized) by the Hot-Dip Process - C423-09a.....Standard Test Method for Sound Absorption and Sound Absorption Coefficients by the Reverberation Room Method - C. American Institute of Steel Construction (AISC): 360-10......Specification for Structural Steel Buildings. - D. American Iron and Steel Institute (AISI): - S100-07......North American Specification for the Design of Cold-Formed Steel Structural Members, 2007 Edition with Supplement 2.aisc - E. American Welding Society (AWS): - D1.3-08.....Structural Welding Code Sheet Steel - F. Factory Mutual (FM Global): - 1. Loss Prevention Data Sheet 1-28: Wind Loads to Roof Systems and Roof Deck Securement - 2. Factory Mutual Research Approval Guide (2002) - G. Military Specifications (Mil. Spec.) 05 31 00 - 2 MIL-P-21035B............Paint, High Zinc Dust Content, Galvanizing Repair ## PART 2 - PRODUCTS #### 2.1 MATERIALS: - A. Steel Decking: ASTM A653, Structural Quality B. Galvanizing: ASTM A653, G90. - C. Galvanizing Repair Paint: Mil. Spec. MIL-P-21035B. - D. Primer for Shop Painted Sheets: Manufacturer's standard primer (2 coats). When finish painting of steel decking is specified in Section 09 91 00, PAINTING primer coating shall be compatible with specified finish painting. - E. Miscellaneous Steel Shapes: ASTM A36. - F. Welding Electrode: E60XX minimum. - G. Sheet Metal Accessories: ASTM A653, galvanized, unless noted otherwise. Provide accessories of every kind required to complete the installation of metal decking in the system shown. Finish sheet metal items to match deck including, but not limited to, the following items: - 1. Metal Cover Plates: For end-abutting deck units, to close gaps at changes in deck direction, columns, walls and openings. Same quality as deck units but not less than 1.3 mm (18 gauge) sheet steel. - 2. Continuous Sheet Metal Edging: At openings, concrete slab edges and roof deck edges. Same quality as deck units but not less than 1.3 mm (18 gauge) steel. Side and end closures supporting concrete and their attachment to supporting steel shall be designed by the manufacturer to safely support the wet weight of concrete and construction loads. The deflection of cantilever closures shall be limited to 3 mm (1/8 inch) maximum. - 3. Metal Closure Strips: For openings between decking and other construction, of not less than 1.3 mm (18 gauge) sheet steel of the same quality as the deck units. Form to the configuration required to provide tight-fitting closures at open ends of flutes and sides of decking. - 4. Ridge and Valley Plates: Provide 1.3 mm (18 gauge), minimum 100 mm (4 inch) wide ridge and valley plates where roof slope exceeds 40 mm per meter (1/2 inch per foot). - 5. Cant Strips: Provide bent metal 45 degree leg cant strips where indicated on the Drawings. Fabricate cant strips from 1 mm (20 gauge) metal with a minimum 125 mm (5 inch) face width. - 6. Seat Angles for Deck: Provide where a beam does not frame into a column. - 7. Sump Pans for Roof Drains: Fabricated from single piece of minimum 1.9 mm (14 gauge) galvanized sheet steel with level bottoms and sloping sides to direct water flow to drain, unless otherwise shown. Provide sump pans of adequate size to receive roof drains and with bearing flanges not less than 75 mm (3 inches) wide. Recess pans not less than 38 mm (1 1/2 inches) below roof deck surface, unless otherwise shown or required by deck configuration. Holes for drains will be cut in the field. ### 2.2 REQUIREMENTS: - A. Provide steel decking of the type, depth, gauge, and section properties as shown. - B. Metal Form Deck Type 1: Single pan fluted units utilized as a permanent form for reinforced concrete slabs. Comply with the depth and gauge requirements as shown on the Contract Documents. - 1. Finish: Galvanized G-60. - C. Metal Form Deck Type 2: Corrugated deck units used as a permanent form for reinforced concrete slabs. Comply with the depth and minimum gauge requirements as shown on the Contract Documents. - 1. Finish: Galvanized. - D. Metal Roof Deck: Single pan fluted units with flat horizontal top surfaces utilized to act as a permanent support for all superimposed loads. Comply with the depth and minimum gage requirements as shown on the Contract Documents. - 1. Wide Rib (Type B) deck. - 2. Intermediate Rib (Type F) deck. - 3. Narrow Rib (Type A) deck. - 4. Deep Rib (Type N) deck. - 5. Finish: Galvanized G-60. - E. Acoustic Metal Roof Deck Units: Single-pan fluted units with perforated vertical webs, metal thickness, depth and width as indicated. Provide mineral fiber acoustical insulation strips of profile to fit void space between vertical ribs, with a system Noise Reduction Coefficient of 0.90. Submit test results per ASTM C423 certifying acoustical performance. - F. Do not use steel deck for hanging supports for any type or kind of building components including suspended ceilings, electrical light fixtures, plumbing, heating, or air conditioning pipes or ducts or electrical conduits. - G. Steel decking units used for interstitial levels shall include an integral system. - 1. System to provide a simple point of attachment for light duty hanger devices. - 2. System to allow for flexibility for attaching hangers for support of suspended ceilings, electrical, plumbing, heating, or air conditioning items, weight not to exceed 50 kg/m² (10 psf). - 3. System shall provide for a minimum spacing pattern of 300 mm (12 inches) on centers longitudinally and 600 mm (24 inches) on centers transversely. - 4. Maximum load suspended from any hanger is 23 kg (50 pounds). - 5. System consisting of fold-down type hanger tabs or lip hanger is acceptable. ## PART 3 - EXECUTION ## 3.1 ERECTION: - A. Do not start installation of metal decking until corresponding steel framework has been plumbed, aligned and completed and until temporary shoring, where required, has been installed. Remove any oil, dirt, paint, ice, water and rust from steel surfaces to which metal decking will be welded. - B. Coordinate and cooperate with structural steel erector in locating decking bundles to prevent overloading of structural members. - C. Do not use floor deck units for storage or working platforms until permanently secured. Do not overload deck units once placed. Replace any deck units that become damaged after erection and prior to casting concrete at no cost to the Government. - D. Provide steel decking in sufficient lengths to extend over 3 or more spans, except for interstitial levels. - E. Place steel decking units at right angles to supporting members. End laps of sheets of roof deck shall be a minimum of 50 mm (2 inches) and shall occur over supports. ## F. Fastening Deck Units: - 1. Fasten floor deck units to steel supporting members by not less than 16 mm (5/8 inch) diameter puddle welds or elongated welds of equal strength, spaced not more than 305 mm (12 inches) o.c. with a minimum of two welds per unit at each support. Where two units abut, fasten each unit individually to the supporting steel framework. - 2. Tack weld or use self-tapping No. 8 or larger machine screws at 915 mm (3 feet) o.c. for fastening end closures. Only use welds to attach longitudinal end closures. - 3. Weld side laps of adjacent floor deck units that span more than 1524 mm (5 feet). Fasten at midspan or 915 mm (3 feet) o.c., whichever is smaller. - 4. Fasten roof deck units to steel supporting members by not less than 16 mm (5/8 inch) diameter puddle welds or elongated welds of equal strength, spaced not more than 305 mm (12 inches) o.c. at every support, and at closer spacing where required for lateral force resistance by diaphragm action. Attach split or partial panels to the structure in every valley. In addition, secure deck to each supporting member in ribs where side laps occur. Power driven fasteners may be used in lieu of welding for roof deck if strength equivalent to the welding specified above is provided. Submit test data and design calculations verifying equivalent design strength. - 5. Mechanically fasten side laps of adjacent roof deck units with spans greater than 1524 mm (5 feet) between supports, at intervals not exceeding 915 mm (3 feet) o.c., or midspan, whichever is closer, using self-tapping No. 8 or larger machine screws. - 6. Provide any additional fastening necessary to comply with the requirements of Underwriters Laboratories and/or Factory Mutual to achieve the required ratings. - 7. Uplift Loading: Install and anchor roof deck units to resist gross uplift loading of 2.1 kPa (45 psf) at eave overhang and 1.4 kPa (30 psf) for other roof areas. - 8. Weld end laps of corrugated form deck units in valley of side lap and at middle of sheet (maximum spacing of welds is 380 mm (15 inches). - 9. Weld corrugated deck to intermediate supports in an X pattern. Weld in valley of side laps on every other support and in the valley of the center corrugation on the remaining supports (maximum spacing of welds is 760 mm (30 inches)). ## G. Cutting and Fitting: - 1. Cut all metal deck units to proper length in the shop prior to shipping. - Field cutting by the metal deck erector is restricted to bevel cuts, notching to fit around columns and similar items, and cutting openings that are located and dimensioned on the Structural Drawings. - 3. Other penetrations shown on the approved metal deck shop drawings but not shown on the Structural Drawings are to be located, cut and reinforced by the trade requiring the
opening. - 4. Make all cuts neat and trim using a metal saw, drill or punchout device; cutting with torches is expressly prohibited. - 5. Do not make any cuts in the metal deck that are not shown on the approved metal deck drawings. If an additional opening not shown on the approved shop drawings is required, submit a sketch, to scale, locating the required new opening and any other openings and supports in the immediate area. Do not cut the opening until the sketch has been reviewed and accepted by the Resident Engineer. Provide any additional reinforcing or framing required for the opening at no cost to the Government. Failure to comply with these requirements is cause for rejection of the work and removal and replacement of the affected metal deck. - 6. Reinforcement at Openings: Provide additional metal reinforcement and closure pieces as required for strength, continuity of decking, and support of other work shown. ### 3.2 WELDING: Welds shall be made only by welders and welding operators who have been previously qualified by tests as prescribed in AWS D1.3. ### 3.3 FIELD REPAIR: - 1. Areas scarred during erection. - 2. Welds to be thoroughly cleaned and touched-up. - - - E N D - - - ## SECTION 05 50 00 METAL FABRICATIONS ## PART 1 - GENERAL ### 1.1 DESCRIPTION - A. This section specifies items and assemblies fabricated from structural steel shapes and other materials as shown and specified. - B. Items specified. - Support for Wall and Ceiling Mounted Items: (SD055000-01, SD055000-02, SD102113-01, SD102600-01, SD123100-01 & SD123100-02) - 2. Frames: - 3. Guards - 4. Covers and Frames for Pits and Trenches. - 5. Gratings - 6. Loose Lintels - 7. Shelf Angles - 8. Gas Racks - 9. Plate Door Sill - 10. Safety Nosings - 11. Ladders - 12. Railings: - 13. Catwalks and Platforms - 14. Trap Doors with Ceiling Hatch - 15. Sidewalk Access Doors - 16. Screened Access Doors - 17. Steel Counter or Bench Top Frame and Leg ## 1.2 RELATED WORK - A. Prime and finish painting: Section 09 91 00, PAINTING. - B. Stainless steel corner guards: Section 10 26 00, WALL AND DOOR PROTECTION. # 1.3 SUBMITTALS - A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. - B. Manufacturer's Literature and Data: | Trap door | Wheel guards | |----------------|----------------------| | Ceiling hatch | Sidewalk Access door | | Manhole Covers | Safety nosing | ### C. Shop Drawings: - Each item specified, showing complete detail, location in the project, material and size of components, method of joining various components and assemblies, finish, and location, size and type of anchors. - 2. Mark items requiring field assembly for erection identification and furnish erection drawings and instructions. - 3. Provide templates and rough-in measurements as required. - D. Manufacturer's Certificates: - 1. Anodized finish as specified. - 2. Live load designs as specified. - E. Design Calculations for specified live loads including dead loads. - F. Furnish setting drawings and instructions for installation of anchors to be preset into concrete and masonry work, and for the positioning of items having anchors to be built into concrete or masonry construction. ## 1.4 QUALITY ASSURANCE - A. Each manufactured product shall meet, as a minimum, the requirements specified, and shall be a standard commercial product of a manufacturer regularly presently manufacturing items of type specified. - B. Each product type shall be the same and be made by the same manufacturer. - C. Assembled product to the greatest extent possible before delivery to the site. - D. Include additional features, which are not specifically prohibited by this specification, but which are a part of the manufacturer's standard commercial product. # 1.5 APPLICABLE PUBLICATIONS - A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. - B. American Society of Mechanical Engineers (ASME): B18.2.2-87(R2005)......Square and Hex Nuts | C. | American Society for Testing and Materials (ASTM): | |----|---| | | A36/A36M-12Structural Steel | | | A47-99(R2009)Malleable Iron Castings | | | A48-03(R2012)Gray Iron Castings | | | A53-12Pipe, Steel, Black and Hot-Dipped, Zinc-Coated | | | Welded and Seamless | | | Al23-12Zinc (Hot-Dip Galvanized) Coatings on Iron and | | | Steel Products | | | A240/A240M-14Standard Specification for Chromium and | | | Chromium-Nickel Stainless Steel Plate, Sheet | | | and Strip for Pressure Vessels and for General | | | Applications. | | | A269-10Seamless and Welded Austenitic Stainless Steel | | | Tubing for General Service | | | A307-12Carbon Steel Bolts and Studs, 60,000 PSI | | | Tensile Strength | | | A391/A391M-07(R2012)Grade 80 Alloy Steel Chain | | | A786/A786M-09Rolled Steel Floor Plate | | | B221-13Aluminum and Aluminum-Alloy Extruded Bars, | | | Rods, Wire, Shapes, and Tubes | | | B456-11Electrodeposited Coatings of Copper Plus Nickel | | | Plus Chromium and Nickel Plus Chromium | | | B632-08Aluminum-Alloy Rolled Tread Plate | | | C1107-13Packaged Dry, Hydraulic-Cement Grout | | | (Nonshrink) | | | D3656-13Insect Screening and Louver Cloth Woven from | | | Vinyl-Coated Glass Yarns | | | F436-11Hardened Steel Washers | | | F468-06(R2012)Nonferrous Bolts, Hex Cap Screws, Socket Head | | | Cap Screws and Studs for General Use | | | F593-13Stainless Steel Bolts, Hex Cap Screws, and | | | Studs | | | F1667-11Driven Fasteners: Nails, Spikes and Staples | | D. | American Welding Society (AWS): | | | D1.1-10Structural Welding Code Steel | | | D1.2-08Structural Welding Code Aluminum | | | D1.3-08Structural Welding Code Sheet Steel | | Ε. | National Association of Architectural Metal Manufacturers (NAAMM) | |----|---| | | AMP 521-01Pipe Railing Manual | | | AMP 500-06Metal Finishes Manual | | | MBG 531-09Metal Bar Grating Manual | | | MBG 532-09Heavy Duty Metal Bar Grating Manual | | F. | Structural Steel Painting Council (SSPC)/Society of Protective | | | Coatings: | | | SP 1-04No. 1, Solvent Cleaning | | | SP 2-04No. 2, Hand Tool Cleaning | | | SP 3-04No. 3, Power Tool Cleaning | | G. | Federal Specifications (Fed. Spec): | | | RR-T-650ETreads, Metallic and Nonmetallic, Nonskid | # PART 2 - PRODUCTS ## 2.1 DESIGN CRITERIA - A. In addition to the dead loads, design fabrications to support the following live loads unless otherwise specified. - B. Ladders and Rungs: 120 kg (250 pounds) at any point. - C. Railings and Handrails: $900 \ N$ ($200 \ pounds$) in any direction at any point. - D. Floor Plates, Gratings, Covers, Trap Doors, Catwalks, and Platforms: $500~kg/m^2~(100~pounds~per~square~foot).~Use~____~kg~(pounds)~for~concentrated~loads.~Use~___~kg/m^2~(pounds~per~square~foot)~for~vehicle~loads~in~the~following~areas~:~_____.$ - E. Manhole Covers: 1200 kg/m² (250 pounds per square foot). # 2.2 MATERIALS - A. Structural Steel: ASTM A36. - B. Stainless Steel: ASTM A240, Type 302 or 304. - C. Aluminum, Extruded: ASTM B221, Alloy 6063-T5 unless otherwise specified. For structural shapes use alloy 6061-T6 and alloy 6061-T4511. - D. Floor Plate: - 1. Steel ASTM A786. - 2. Aluminum: ASTM B632. - E. Steel Pipe: ASTM A53. - 1. Galvanized for exterior locations. - 2. Type S, Grade A unless specified otherwise. - 3. NPS (inside diameter) as shown. 05 50 00- 4 - F. Cast-Iron: ASTM A48, Class 30, commercial pattern. - G. Malleable Iron Castings: A47. - H. Primer Paint: As specified in Section 09 91 00, PAINTING. - I. Stainless Steel Tubing: ASTM A269, type 302 or 304. - J. Modular Channel Units: - 1. Factory fabricated, channel shaped, cold formed sheet steel shapes, complete with fittings bolts and nuts required for assembly. - 2. Form channel within turned pyramid shaped clamping ridges on each side. - 3. Provide case hardened steel nuts with serrated grooves in the top edges designed to be inserted in the channel at any point and be given a quarter turn so as to engage the channel clamping ridges. Provide each nut with a spring designed to hold the nut in place. - 4. Factory finish channels and parts with oven baked primer when exposed to view. Channels fabricated of ASTM A525, G90 galvanized steel may have primer omitted in concealed locations. Finish screws and nuts with zinc coating. - 5. Fabricate snap-in closure plates to fit and close exposed channel openings of not more than 0.3 mm (0.0125 inch) thick stainless steel. - K. Grout: ASTM C1107, pourable type. - L. Insect Screening: ASTM D3656. # 2.3 HARDWARE - A. Rough Hardware: - Furnish rough hardware with a standard plating, applied after punching, forming and assembly of parts; galvanized, cadmium plated, or zinc-coated by electro-galvanizing process. Galvanized G-90 where specified. - 2. Use G90 galvanized coating on ferrous metal for exterior work unless non-ferrous metal or stainless is used. ## B. Fasteners: - 1. Bolts with Nuts: - a. ASME B18.2.2. - b. ASTM A307 for 415 MPa (60,000 psi) tensile strength bolts. - c. ASTM F468 for nonferrous bolts. - d. ASTM F593 for stainless steel. - 2. Screws: ASME B18.6.1. VA Tomah Medical Center, WI Replace Chiller-Building 403 100% Bid Documents - 3. Washers: ASTM F436, type to suit material and anchorage. - 4. Nails: ASTM F1667, Type I, style 6 or 14 for finish work. ## 2.4 FABRICATION GENERAL ### A. Material - 1. Use material as specified. Use material of commercial quality and suitable for intended purpose for material that is not named or its standard of quality not specified. - 2. Use material free of defects which could affect the appearance or service ability of the finished product. #### B. Size: - 1. Size and thickness of members as shown. - 2. When size and thickness is not specified or shown for an individual part, use size and thickness not less than that used for the same component on similar standard
commercial items or in accordance with established shop methods. #### C. Connections - 1. Except as otherwise specified, connections may be made by welding, riveting or bolting. - 2. Field riveting will not be approved. - 3. Design size, number and placement of fasteners, to develop a joint strength of not less than the design value. - 4. Holes, for rivets and bolts: Accurately punched or drilled and burrs removed. - 5. Size and shape welds to develop the full design strength of the parts connected by welds and to transmit imposed stresses without permanent deformation or failure when subject to service loadings. - 6. Use Rivets and bolts of material selected to prevent corrosion (electrolysis) at bimetallic contacts. Plated or coated material will not be approved. - 7. Use stainless steel connectors for removable members machine screws or bolts. ### D. Fasteners and Anchors - 1. Use methods for fastening or anchoring metal fabrications to building construction as shown or specified. - 2. Where fasteners and anchors are not shown, design the type, size, location and spacing to resist the loads imposed without deformation of the members or causing failure of the anchor or fastener, and suit the sequence of installation. - 3. Use material and finish of the fasteners compatible with the kinds of materials which are fastened together and their location in the finished work. - 4. Fasteners for securing metal fabrications to new construction only, may be by use of threaded or wedge type inserts or by anchors for welding to the metal fabrication for installation before the concrete is placed or as masonry is laid. - 5. Fasteners for securing metal fabrication to existing construction or new construction may be expansion bolts, toggle bolts, power actuated drive pins, welding, self drilling and tapping screws or bolts. # E. Workmanship ### 1. General: - a. Fabricate items to design shown. - b. Furnish members in longest lengths commercially available within the limits shown and specified. - c. Fabricate straight, true, free from warp and twist, and where applicable square and in same plane. - d. Provide holes, sinkages and reinforcement shown and required for fasteners and anchorage items. - e. Provide openings, cut-outs, and tapped holes for attachment and clearances required for work of other trades. - f. Prepare members for the installation and fitting of hardware. - g. Cut openings in gratings and floor plates for the passage of ducts, sumps, pipes, conduits and similar items. Provide reinforcement to support cut edges. - h. Fabricate surfaces and edges free from sharp edges, burrs and projections which may cause injury. ## 2. Welding: - a. Weld in accordance with AWS. - b. Welds shall show good fusion, be free from cracks and porosity and accomplish secure and rigid joints in proper alignment. - c. Where exposed in the finished work, continuous weld for the full length of the members joined and have depressed areas filled and protruding welds finished smooth and flush with adjacent surfaces. d. Finish welded joints to match finish of adjacent surface. ### 3. Joining: - a. Miter or butt members at corners. - b. Where frames members are butted at corners, cut leg of frame member perpendicular to surface, as required for clearance. #### 4. Anchors: - a. Where metal fabrications are shown to be preset in concrete, weld $32 \times 3 \text{ mm}$ (1-1/4 by 1/8 inch) steel strap anchors, 150 mm (6 inches) long with 25 mm (one inch) hooked end, to back of member at 600 mm (2 feet) on center, unless otherwise shown. - b. Where metal fabrications are shown to be built into masonry use 32×3 mm (1-1/4 by 1/8 inch) steel strap anchors, 250 mm (10 inches) long with 50 mm (2 inch) hooked end, welded to back of member at 600 mm (2 feet) on center, unless otherwise shown. ## 5. Cutting and Fitting: - a. Accurately cut, machine and fit joints, corners, copes, and miters. - b. Fit removable members to be easily removed. - c. Design and construct field connections in the most practical place for appearance and ease of installation. - d. Fit pieces together as required. - e. Fabricate connections for ease of assembly and disassembly without use of special tools. - f. Joints firm when assembled. - g. Conceal joining, fitting and welding on exposed work as far as practical. - h. Do not show rivets and screws prominently on the exposed face. - i. The fit of components and the alignment of holes shall eliminate the need to modify component or to use exceptional force in the assembly of item and eliminate the need to use other than common tools. ### F. Finish: - 1. Finish exposed surfaces in accordance with NAAMM AMP 500 Metal Finishes Manual. - 2. Aluminum: NAAMM AMP 501. - a. Mill finish, AA-M10, as fabricated, use unless specified otherwise. - b. Clear anodic coating, AA-C22A41, chemically etched medium matte, with Architectural Class 1, 0.7 mils or thicker. - c. Colored anodic coating, AA-C22A42, chemically etched medium matte with Architectural Class 1, 0.7 mils or thicker. - d. Painted: AA-C22R10. - 3. Steel and Iron: NAAMM AMP 504. - a. Zinc coated (Galvanized): ASTM A123, G90 unless noted otherwise. - b. Surfaces exposed in the finished work: - 1) Finish smooth rough surfaces and remove projections. - 2) Fill holes, dents and similar voids and depressions with epoxy type patching compound. - c. Shop Prime Painting: - 1) Surfaces of Ferrous metal: - a) Items not specified to have other coatings. - b) Galvanized surfaces specified to have prime paint. - c) Remove all loose mill scale, rust, and paint, by hand or power tool cleaning as defined in SSPC-SP2 and SP3. - d) Clean of oil, grease, soil and other detrimental matter by use of solvents or cleaning compounds as defined in SSPC-SP1. - e) After cleaning and finishing apply one coat of primer as specified in Section 09 91 00, PAINTING. - 2) Non ferrous metals: Comply with MAAMM-500 series. - 4. Stainless Steel: NAAMM AMP-504 Finish No. 4. - 5. Chromium Plating: ASTM B456, satin or bright as specified, Service Condition No. SC2. # G. Protection: - Insulate aluminum surfaces that will come in contact with concrete, masonry, plaster, or metals other than stainless steel, zinc or white bronze by giving a coat of heavy-bodied alkali resisting bituminous paint or other approved paint in shop. - 2. Spot prime all abraded and damaged areas of zinc coating which expose the bare metal, using zinc rich paint on hot-dip zinc coat items and zinc dust primer on all other zinc coated items. #### 2.5 SUPPORTS ## A. General: - 1. Fabricate ASTM A36 structural steel shapes as shown. - 2. Use clip angles or make provisions for welding hangers and braces to overhead construction. - 3. Field connections may be welded or bolted. # B. For Ceiling Hung Toilet Stall: - 1. Use a continuous steel channel above pilasters with hangers centered over pilasters. - 2. Make provision for installation of stud bolts in lower flange of channel. - 3. Provide a continuous steel angle at wall and channel braces spaced as shown. - 4. Use threaded rod hangers. - 5. Provide diagonal angle brace where the suspended ceiling over toilet stalls does not extend to side wall of room. ### C. For Wall Mounted Items: - 1. For items supported by metal stud partitions. - 2. Steel strip or hat channel minimum of 1.5 mm (0.0598 inch) thick. - 3. Steel strip minimum of 150 mm (6 inches) wide, length extending one stud space beyond end of item supported. - 4. Steel hat channels where shown. Flange cut and flatted for anchorage to stud. - 5. Structural steel tube or channel for grab bar at water closets floor to structure above with clip angles or end plates formed for anchors. - 6. Use steel angles for thru wall counters. Drill angle for fasteners at ends and not over 100 mm (4 inches) on center between ends. ## D. For Trapeze Bars: - 1. Construct assembly above ceilings as shown and design to support not less than a 340 kg (750 pound) working load at any point. - 2. Fabricate trapeze supports as shown, with all exposed members, including screws, nuts, bolts and washers, fabricated of stainless steel - 3. Fabricate concealed components of structural steel shapes unless shown otherwise. - 4. Stainless steel ceiling plate drilled for eye bolt. - 5. Continuously weld connections where welds shown. - 6. Use modular channel where shown with manufacturers bolts and fittings. - a. Weld ends of steel angle braces to steel plates and secure to modular channel units as shown. Drill plates for anchor bolts. - b. Fabricate eye bolt, special clamp bolt, and plate closure full length of modular channel at ceiling line and secure to modular channel unit with manufacturers standard fittings. - E. For Intravenous Track and Cubical Curtain Track: - 1. Fabricate assembly of steel angle as shown. - 2. Drill angle bent ends for anchor screws to acoustical suspension system and angle for hanger wires. - 3. Provide pipe sleeve welded to angle. - F. Supports at Ceiling for Radiographic (x-ray) Equipment: - 1. Fabricate hangers braces, and track of modular channel units assembly as shown. - 2. Fabricate steel plates for anchor to structure above. - 3. Drill bent plates for bolting at mid height at concrete beams. - G. For Operating Room Light: - 1. Fabricate as shown to suit equipment furnished. - 2. Drill leveling plate for light fixture bolts. - H. Supports in Orthopedic Brace Shop: - Fabricate from 25 mm (one inch) steel pipe, fasten to steel angles above and extend to a point 150 mm (6 inches) below finished ceiling. - 2. Lower end of the pipe shall have a standard pipe thread. - 3. Provide an escutcheon plate at ceiling. - I. Supports for Accordion Partition Tracks, Exercise Equipment, and Items at Various Conditions at Suspended Ceilings: - 1. Fabricate of structural steel shapes as shown. - 2. Drill for anchor bolts of suspended item. - J. Supports for Communion Rail Posts in Chapel: - 1. Fabricate one steel plate support for each post as shown.
- 2. Drill for fasteners. ## 2.6 FRAMES NOT USED # 2.7 GUARDS A. Wall Corner Guards: - 1. Fabricate from steel angles and furnish with anchors as shown. - 2. Continuously weld anchor to angle. - B. Guard Angles for Overhead Doors: - 1. Cut away top portion of outstanding leg of angle and extend remaining portion of angle up wall. - 2. Weld filler piece across head of opening to jamb angles. - 3. Make provisions for fasteners and anchorage. - C. Channel Guard at Loading Platform: - 1. Fabricate from steel channel of size shown. - 2. Weld anchors to channels as shown. - 3. Drill channel for bumper anchor bolts. - D. Edge Guard Angles for Openings in slabs. - 1. Fabricate from steel angles of sizes and with anchorage shown. - 2. Where size of angle is not shown, provide 50 x 50 x 6 mm (2 x 2 x 1/4 inch) steel angle with 32 x 5 mm (1-1/4 x 3/16 inch) strap anchors, welded to back. - 3. Miter or butt angles at corners and weld. - 4. Use one anchor near end and three feet on centers between end anchors. - E. Wheel Guards: - 1. Construct wheel guards of not less than 16 mm (5/8 inch) thick cast iron. - 2. Provide corner type, with flanges for bolting to walls. ## 2.8 COVERS AND FRAMES FOR PITS AND TRENCHES - A. Fabricate covers to support live loads specified. - B. Galvanized steel members after fabrication in accordance with ASTM A123, G-90 coating. - C. Steel Covers: - 1. Use 6 mm (1/4 inch) thick floor plate for covers unless otherwise shown. Use gratings where shown as specified in paragraph GRATINGS. Use smooth floor plate unless noted otherwise. - 2. Provide clearance at all sides to permit easy removal of covers. - 3. Make cutouts within 6 mm (1/4 inch) of penetration for passage of pipes and ducts. - 4. Drill covers for flat head countersunk screws. - 5. Make cover sections not to exceed 2.3 m^2 (25 square feet) in area and 90 kg (200 pounds) in weight. - 6. Fabricate trench cover sections not be over 900 mm (3 feet) long and if width of trench is more than 900 mm (3 feet) or over, equip one end of each section with an angle or "T" bar stiffener to support adjoining plate. - 7. Use two, 13 mm (1/2 inch) diameter steel bar flush drop handles for each cover section. ### D. Cast Iron Covers - 1. Fabricate covers to support live loads specified. - 2. Fabricate from ASTM A48, cast-iron, 13 mm (1/2 inch) minimum metal thickness, cast with stiffeners as required. - 3. Fabricate as flush type with frame, reasonably watertight and be equipped with flush type lifting rings. Provide seals where watertight covers noted. - 4. Make covers in sections not over 90 kg (200 pounds) except round covers. ### E. Steel Frames: - 1. Form frame from structural steel angles as shown. Where not shown use $63 \times 63 \times 6$ mm $(2-1/2 \times 2-1/2 \times 1/4 \text{ inch})$ angles for frame openings over 1200 mm (4 feet) long and $50 \times 50 \times 6$ mm $(2 \text{ ix } 2 \times 1/4 \text{ inch})$ for frame openings less than 1200 mm (4 feet). - 2. Fabricate intermediate supporting members from steel "T's" or angles; located to support cover section edges. - 3. Where covers are required use steel border bars at frames so that top of cover will be flush with frame and finish floor. - 4. Weld steel strap anchors to frame. Space straps not over 600 mm (24 inches) o.c., not shown otherwise between end anchors. Use 6 x 25 x 200 mm (1/4 x 1 x 8 inches) with 50 mm (2 inch) bent ends strap anchors unless shown otherwise. - 5. Drill and tap frames for screw anchors where plate covers occur. ## F. Cast Iron Frames: - 1. Fabricate from ASTM A48 cast iron to shape shown. - 2. Provide anchors for embedding in concrete, spaced near ends and not over 600 mm (24 inches) apart. ## 2.9 GRATINGS A. Fabricate gratings to support live loads specified and a concentrated load as specified. - B. Provide clearance at all sides to permit easy removal of grating. - C. Make cutouts in gratings with 6 mm (1/4 inch) minimum to 25 mm (one inch) maximum clearance for penetrations or passage of pipes and ducts. Edge band cutouts. - D. Fabricate in sections not to exceed 2.3 m^2 (25 square feet) in area and 90 kg (200 pounds) in weight. - E. Fabricate sections of grating with end-banding bars. - F. Fabricate angle frames and supports, including anchorage as shown. - 1. Fabricate intermediate supporting members from "T's" or angles. - 2. Locate intermediate supports to support grating section edges. - 3. Fabricate frame to finish flush with top of grating. - 4. Locate anchors at ends and not over 600 mm (24 inches) o.c. - 5. Butt or miter, and weld angle frame at corners. # G. Steel Bar Gratings: - 1. Fabricate grating using steel bars, frames, supports and other members shown in accordance with Metal Bar Grating Manual. - 2. Galvanize steel members after fabrication in accordance with ASTM A123, G-90 for exterior gratings, gratings in concrete floors, and interior grating where specified. - 3. Interior gratings: Prime paint unless specified galvanized. ## H. Aluminum Bar Gratings: - 1. Fabricate grating and frame assembly from aluminum as shown in accordance with Metal Bar Grating Manual. - 2. Use $25 \times 5 \text{ mm}$ (1 x 3/16 inch) minimum size bearing bars. - 3. Mill finish unless specified otherwise. ### I. Plank Gratings: - 1. Conform to Fed. Spec. RR-G-1602. - 2. Manufacturers standard widths, lengths and side channels to meet live load requirements. - 3. Galvanize exterior steel gratings ASTM A123, G-90 after fabrication. - 4. Fabricate interior steel gratings from galvanized steel sheet, ASTM A525, where bearing on concrete or masonry. - 5. Fabricate other interior grating from steel sheet and finish with shop prime paint. Prime painted galvanized sheet may be used. # J. Cast Iron Gratings: 1. Fabricate gratings to support a live load of 23940 Pa (500 pounds per square foot). VA Tomah Medical Center, WI Replace Chiller-Building 403 100% Bid Documents - 2. Fabricate gratings and frames for gutter type drains from cast-iron conforming to ASTM A48. - 3. Fabricate gratings in section not longer than 1200 mm (4 feet) or over 90 kg (200 pounds) and fit so as to be readily removable. ### 2.10 LOOSE LINTELS NOT USED Α. #### 2.11 SHELF ANGLES - A. Fabricate from steel angles of size shown. - B. Fabricate angles with horizontal slotted holes for 19 mm (3/4 inch) bolts spaced at not over 900 mm (3 feet) on centers and within 300 mm (12 inches) of ends. - C. Provide adjustable malleable iron inserts for embedded in concrete framing. ## 2.12 PLATE DOOR SILL - A. Fabricate of checkered plate as detailed. - 1. Aluminum Plate: ASTM B632, 3 mm (0.125 inch) thick. - 2. Steel Plate: ASTM A786, 3 mm (0.125 inch thick), galvanized G90. - B. Fabricate for anchorage with flat head countersunk bolts at each end and not over 300 mm (12 inches), o.c. ### 2.13 SAFETY NOSINGS - A. Fed. Spec. RR-T-650, Type C. - 1. Aluminum: Class 2, Style 2. - 2. Cast iron: Class 4. - B. Fabricate nosings for exterior use from cast aluminum, and nosings for interior use from either cast aluminum or cast iron. Use one Class throughout. - C. Fabricate nosings approximately 100 mm (4 inches) wide with not more than 9 mm (3/8 inch) nose. - D. Provide nosings with integral type anchors spaced not more than 100 mm (4 inches) from each end and intermediate anchors spaced approximately 375 mm (15 inches) on center. - E. Fabricate nosings to extend within 100 mm (4 inches) of ends of concrete stair treads except where shown to extend full width. - F. Fabricate nosings to extend full width between stringers of metal stairs and full width of door openings. G. On curved steps fabricate to terminate at point of curvature of steps having short radius curved ends. ### 2.14 LADDERS NOT USED ### 2.15 RAILINGS - A. In addition to the dead load design railing assembly to support live load specified. - B. Fabrication General: - 1. Provide continuous welded joints, dressed smooth and flush. - 2. Standard flush fittings, designed to be welded, may be used. - 3. Exposed threads will not be approved. - 4. Form handrail brackets to size and design shown. - 5. Exterior Post Anchors. - a. Fabricate tube or pipe sleeves with closed ends or plates as shown. - b. Where inserts interfere with reinforcing bars, provide flanged fittings welded or threaded to posts for securing to concrete with expansion bolts. - c. Provide heavy pattern sliding flange base plate with set screws at base of pipe or tube posts. // Base plates are not required on pipe sleeves where ornamental railings occur. // - 6. Interior Post Anchors: - a. Provide flanged fittings for securing fixed posts to floor with expansion bolts, unless shown otherwise. - b. Weld or thread flanged fitting to posts at base. - c. For securing removable posts to floor, provide close fitting sleeve insert or inverted flange base plate with stud bolts or rivets concrete anchor welded to the base plate. - d. Provide sliding flange base plate on posts secured with set screws. - e. Weld flange base plate to removable posts set in sleeves. ### C. Handrails: - 1. Close free ends of rail with flush metal caps welded in place except where flanges for securing to walls with bolts are shown. - 2. Make provisions for attaching handrail brackets to wall, posts, and handrail as shown. # D. Steel Pipe Railings: - 1. Fabricate of steel pipe with welded joints. - 2. Number and space of rails as shown. - 3. Space posts for railings not over 1800 mm (6 feet) on centers between end posts. - 4. Form handrail brackets from malleable iron. - 5. Fabricate removable sections with posts at end of section. - 6. Removable Rails: - a. Provide "U" shape brackets at each end to hold removable rail as shown. Use for top and bottom horizontal rail when rails are joined together with vertical members. - b. Secure rail to brackets with 9 mm (3/8 inch) stainless steel through bolts and nuts at top rail only when rails joined with vertical members. - c. Continuously weld brackets to post. - d. Provide
slotted bolt holes in rail bracket. - e. Weld bolt heads flush with top of rail. - f. Weld flanged fitting to post where posts are installed in sleeves. # 7. Opening Guard Rails: - a. Fabricate rails with flanged fitting at each end to fit between wall opening jambs. - b. Design flange fittings for fastening with machine screws to steel plate anchored to jambs. - c. Fabricate rails for floor openings for anchorage in sleeves. ### 8. Gates: - a. Fabricate from steel pipe as specified for railings. - b. Fabricate gate fittings from either malleable iron or wrought steel. - c. Hang each gate on suitable spring hinges of clamp on or through bolted type. Use bronze hinges for exterior gates. - d. Provide suitable stops, so that gate will swing as shown. ### 9. Chains: a. Chains: ASTM A391, Grade 63, straight link style, normal size chain bar 8 mm (5/16 inch) diameter, eight links per 25 mm (foot) and with boat type snap hook on one end, and through type eye bolt on other end. - b. Fabricate eye bolt for attaching chain to pipe posts, size not less than 9 mm (3/8 inch) diameter. - c. Fabricate anchor at walls, for engagement of snap hook of either a 9 mm (3/8 inch) diameter eye bolt or punched angle. - d. Galvanize chain and bolts after fabrication. ### E. Aluminum Railings: - 1. Fabricate from extruded aluminum. - 2. Use tubular posts not less than 3 mm (0.125 inch) wall thickness for exterior railings. - 3. Punch intermediate rails and bottom of top rails for passage of posts and machine to a close fit. - 4. Where shown use extruded channel sections for top rail with 13 mm (1/2 inch) thick top cover plates and closed ends. - 5. Fabricate brackets of extruded or wrought aluminum as shown. - 6. Fabricate stainless pipe sleeves with closed bottom at least six inches deep having internal dimensions at least 13 mm (1/2 inch) greater than external dimensions of posts where set in concrete. ## F. Stainless Steel Railings: - 1. Fabricate from 38 mm (1-1/2 inches) outside diameter stainless steel tubing, ASTM A269, having a wall thickness of 1.6 mm (0.065 inch). - 2. Join sections by an internal connector to form hairline joints where field assembled. - 3. Fabricate with continuous welded connections. - 4. Fabricate brackets of stainless steel to design shown. - 5. Fabricate stainless steel sleeves at least 150 mm (6 inches) deep having internal dimensions at least 13 mm (1/2 inch) greater than external dimensions of post. # 2.16 CATWALKS - A. Fabricate catwalks including platforms, railings, ladders, supports and hangers, and arrangement of members as shown on drawings. - B. Fabricate stairs as specified in Section 05 51 00, METAL STAIRS. - C. Fabricate steel ladders as specified under paragraph LADDERS unless shown otherwise. - D. Fabricate steel pipe railings as specified under paragraph RAILINGS. - E. Catwalk and platforms floor surfaces as shown. - Steel gratings as specified under paragraph gratings, either bar or plank type. VA Tomah Medical Center, WI Replace Chiller-Building 403 100% Bid Documents - 2. Steel floor plate. - 3. Aluminum floor plate. - F. Prime paint catwalk system. ### 2.17 TRAP DOOR AND FRAMES WITH CEILING HATCH NOT USED ### 2.18 SIDEWALK DOOR - A. Use flush, watertight, gutter type design. - B. Cover fabricate of 6 mm (1/4 inch) thick, diamond pattern floor plate. - C. Use automatic lock hold open feature and be hung on two flush type heavy bronze hinges capable of 90 degree swing on each door leaf. - D. Equip with locking and latching device and lifting devices; operable and accessible from both sides of doors. - E. Doors removable without disturbing frame. - F. Provide gutters at all joints for drainage of water. ### 2.19 SCREENED ACCESS DOORS AND FRAMES - A. Galvanized ASTM A123, G-90 after fabrication. - B. Wall frame: - 1. Fabricate frame from steel angles or channels as shown. - 2. Continuously weld 38 x 13 mm $(1-1/2 \times 1/2 \text{ inch})$ steel channel door stop to angle frame. Cut out lock strike opening in channel. - 3. Miter and weld channel frame at corners. Reinforce corner with 3 mm (1/8 inch) plate angle. - 4. Reinforce channel frame with 3 \times 150 mm (1/8 \times 6 inch) long steel plate at channel back to cutout for latch. Cutout lock strike opening in channel face. Drill and tap for hinge anchorage. - 5. Drill jambs for 6 mm (1/4 inch) bolt anchors at top and bottom and not over 450 mm (18 inches) between top and bottom. - 6. Fabricate frame for door to sit flush with face of frame. ## C. Doors - Fabricate door using steel channel frame with 3 mm (1/8 inch) angle plate reinforcing at corners. - 2. Miter and weld corners. - 3. Fabricate lock box of 1.6 mm (1/16 inch) plate and weld to channel surround. - 4. Provide wire mesh constructed of 3.5 mm (0.135 inch) diameter galvanized steel wire crimped and woven into 38 mm (1-1/2 inch) diamond mesh pattern. Fasten the wire mesh to door frames by bending the ends of each strand of wire over through channel clinched and welded to channel door frame. - 5. Weld steel plate back-bands to channel door frame at hinge stiles only. - 6. Screen on doors in exterior walls. - a. Fabricate rewirable frame for screen from either extruded or tubular aluminum. - b. Design to allow for removing or replacement frame and screening or adjoining items without damage. - c. Use aluminum insect screening specified. - d. Use stainless steel fasteners for securing screen to door. ### D. Hardware: - 1. Install hinged door to fixed frame with two 63 mm (2-1/2 inch) brass or bronze hinges. - 2. Install lock or latch specified in Section 08 71 00, DOOR HARDWARE in lockbox. ### 2.20 STEEL COUNTER OR BENCH TOP FRAME AND LEGS NOT USED ### PART 3 - EXECUTION ## 3.1 INSTALLATION, GENERAL - A. Set work accurately, in alignment and where shown, plumb, level, free of rack and twist, and set parallel or perpendicular as required to line and plane of surface. - B. Items set into concrete or masonry. - 1. Provide temporary bracing for such items until concrete or masonry is set. - 2. Place in accordance with setting drawings and instructions. - 3. Build strap anchors, into masonry as work progresses. - C. Set frames of gratings, covers, corner guards, trap doors and similar items flush with finish floor or wall surface and, where applicable, flush with side of opening. - D. Field weld in accordance with AWS. - 1. Design and finish as specified for shop welding. - 2. Use continuous weld unless specified otherwise. - E. Install anchoring devices and fasteners as shown and as necessary for securing metal fabrications to building construction as specified. Power actuated drive pins may be used except for removable items and where members would be deformed or substrate damaged by their use. VA Tomah Medical Center, WI Replace Chiller-Building 403 100% Bid Documents - F. Spot prime all abraded and damaged areas of zinc coating as specified and all abraded and damaged areas of shop prime coat with same kind of paint used for shop priming. - G. Isolate aluminum from dissimilar metals and from contact with concrete and masonry materials as required to prevent electrolysis and corrosion. - H. Secure escutcheon plate with set screw. ### 3.2 INSTALLATION OF SUPPORTS - A. Anchorage to structure. - 1. Secure angles or channels and clips to overhead structural steel by continuous welding unless bolting is shown. - 2. Secure supports to concrete inserts by bolting or continuous welding as shown. - 3. Secure supports to mid height of concrete beams when inserts do not exist with expansion bolts and to slabs, with expansion bolts. unless shown otherwise. - 4. Secure steel plate or hat channels to stude as detailed. - B. Ceiling Hung Toilet Stalls: - 1. Securely anchor hangers of continuous steel channel above pilasters to structure above. - 2. Bolt continuous steel angle at wall to masonry or weld to face of each metal stud. - 3. Secure brace for steel channels over toilet stall pilasters to wall angle supports with bolts at each end spaced as shown. - 4. Install diagonal angle brace where the suspended ceiling over toilet stalls does not extend to side wall of room. - 5. Install stud bolts in lower flange of channel before installing furred down ceiling over toilet stalls. - 6. Install support for ceiling hung pilasters at entrance screen to toilet room similar to toilet stall pilasters. - C. Supports for Wall Mounted items: - 1. Locate center of support at anchorage point of supported item. - 2. Locate support at top and bottom of wall hung cabinets. - 3. Locate support at top of floor cabinets and shelving installed against walls. - 4. Locate supports where required for items shown. - D. Support at Ceiling for X-ray Tube Stand and Radiographic Equipment: - 1. Bolt modular steel channel frames to hangers as shown, anchored to structure above. - 2. Fasten frames with modular channel manufacturers fittings, bolts, and nuts. Space modular channel supports and hangers as shown and as required to suit equipment furnished. - 3. Install closure plates in channels at ceiling where channel opening is visible. Coordinate and cut plates to fit tight against equipment anchors after equipment anchors are installed. - E. Ceiling Support for Operating Light: - 1. Anchor support to structure above as shown. - 2. Set leveling plate as shown level with ceiling. - 3. Secure operating light to leveling plate in accordance with light manufacturer's requirements. - F. Supports for intravenous (IV) Track and Cubicle Curtain Track: - 1. Install assembly where shown after ceiling suspension grid is installed. - 2. Drill angle for bolt and weld nut to angle prior to installation of - G. Support for cantilever grab bars: - 1. Locate channels or tube in partition for support as shown, and extend full height from floor to underside of structural slab above. - 2. Anchor at top and bottom with angle clips bolted to channels or tube with two, 9 mm (3/8 inch) diameter bolts. - 3. Anchor to floors and overhead
construction with two 9 mm (3/8 inch) diameter bolts. - 4. Fasten clips to concrete with expansion bolts, and to steel with machine bolts or welds. - H. Supports for Trapeze Bars: - 1. Secure plates to overhead construction with fasteners as shown. - 2. Secure angle brace assembly to overhead construction with fasteners as shown and bolt plate to braces. - 3. Fit modular channel unit flush with finish ceiling, and secure to plate with modular channel unit manufacturer's standard fittings through steel shims or spreaders as shown. - a. Install closure plates in channel between eye bolts. - b. Install eyebolts in channel. - I. Support for Communion Rail Posts: - 1. Anchor steel plate supports for posts as shown. - 2. Use four bolts per plate, locate two at top and two at bottom. - 3. Use lag bolts. ### 3.3 COVERS AND FRAMES FOR PITS AND TRENCHES - A. Set frame and cover flush with finish floor. - B. Secure plates to frame with flat head countersunk screws. - C. Set gratings loose in drainage trenches or over pits unless shown anchored. #### 3.4 FRAMES FOR LEAD LINED DOORS - A. Secure jamb angle clips and plates, at top and bottom with two, 9 mm (3/8 inch) expansion bolts to concrete. - B. Secure 150 x 90 x 13 mm (6 x 3-1/2 x 1/2 inch) angle to steel framing for anchorage when expansion bolts to concrete is not possible. - C. Secure clips by welding to steel. - D. At interstitial spaces, anchor jamb angles as shown. #### 3.5 DOOR FRAMES - A. Secure clip angles at bottom of frames to concrete slab with expansion bolts as shown. - B. Level and plumb frame; brace in position required. - C. At masonry, set frames in walls so anchors are built-in as the work progresses unless shown otherwise. - D. Set frames in formwork for frames cast into concrete. - E. Where frames are set in prepared openings, bolt to wall with spacers and expansion bolts. ## 3.6 OTHER FRAMES - A. Set frame flush with surface unless shown otherwise. - B. Anchor frames at ends and not over 450 mm (18 inches) on centers unless shown otherwise. - C. Set in formwork before concrete is placed. ### 3.7 GUARDS - A. Steel Angle Corner Guards: - 1. Build into masonry as the work progress. - 2. Set into formwork before concrete is placed. - 3. Set angles flush with edge of opening and finish floor or wall or as shown. - 4. At existing construction fasten angle and filler piece to adjoining construction with 16 mm (5/8 inch) diameter by 75 mm (3 inch) long expansion bolts 450 mm (18 inches) on center. - B. Channel Guard at Top Edge of Concrete Platforms: - 1. Install in formwork before concrete is placed. - 2. Set channel flush with top of the platform. ### C. Wheel Guards: - 1. Set flanges of wheel guard at least 50 mm (2 inches) into pavement. - 2. Anchor to walls as shown, expansion bolt if not shown. #### 3.8 GRATINGS - A. Set grating flush with finish floor; top of curb, or areaway wall. Set frame so that horizontal leg of angle frame is flush with face of wall except when frame is installed on face of wall. - B. Set frame in formwork before concrete is placed. - C. Where grating terminates at a wall bolt frame to concrete or masonry with expansion bolts unless shown otherwise. - D. Secure removable supporting members in place with stainless steel bolts. - E. Bolt gratings to supports. ### 3.9 STEEL LINTELS - A. Use lintel sizes and combinations shown or specified. - B. Install lintels with longest leg upstanding, except for openings in 150 mm (6 inch) masonry walls install lintels with longest leg horizontal. - C. Install lintels to have not less than 150 mm (6 inch) bearing at each end for nonbearing walls, and 200 mm (8 inch) bearing at each end for bearing walls. ## 3.10 SHELF ANGLES - A. Anchor shelf angles with 19 mm (3/4 inch) bolts unless shown otherwise in adjustable malleable iron inserts, set level at elevation shown. - B. Provide expansion space at end of members. ## 3.11 PLATE DOOR SILL - A. Install after roofing base flashing and counter flashing work is completed. - B. Set in sealant and bolt to curb. ## 3.12 SAFETY NOSINGS A. Except as specified and where preformed rubber treads are shown or specified install safety nosings at the following: VA Tomah Medical Center, WI Replace Chiller-Building 403 100% Bid Documents - 1. Exterior concrete steps. - 2. Door sills of areaway entrances curbs. - 3. Exposed edges of curbs of door sills at transformer and service rooms. - 4. Interior concrete steps, including concrete filled treads of metal stairs of service stairs. - B. Install flush with horizontal and vertical surfaces. - C. Install nosing to within 100 mm (4 inches) of ends of concrete stair treads, except where shown to extend full width. - D. Extend nosings full width of door openings. - E. Extend nosings, full width between stringers of metal stairs, and terminate at point of curvature of steps having short radius curved ends. ### 3.13 LADDERS - A. Anchor ladders to walls and floors with expansion bolts through turned lugs or angle clips or brackets. - B. In elevator pits, set ladders to clear all elevator equipment where shown on the drawings. - 1. Where ladders are interrupted by division beams, anchor ladders to beams by welding, and to floors with expansion bolts. - 2. Where ladders are adjacent to division beams, anchor ladders to beams with bent steel plates, and to floor with expansion bolts. ### C. Ladder Rungs: - Set ladder rungs into formwork before concrete is placed. // Build ladder rungs into masonry as the work progresses. // - 2. Set step portion of rung 150 mm (6 inches) from wall. - 3. Space rungs approximately 300 mm (12 inches) on centers. - 4. Where only one rung is required, locate it 400 mm (16 inches) above the floor. #### 3.14 RAILINGS ### A. Steel Posts: - 1. Secure fixed posts to concrete with expansion bolts through flanged fittings except where sleeves are shown with pourable grout. - 2. Install sleeves in concrete formwork. - 3. Set post in sleeve and pour grout to surface. Apply beveled bead of urethane sealant at perimeter of post or under flange fitting as specified in Section 07 92 00, JOINT SEALANTS—on exterior posts. - 4. Secure removable posts to concrete with either machine screws through flanged fittings which are secured to inverted flanges embedded in and set flush with finished floor, or set posts in close fitting pipe sleeves without grout. - 5. Secure sliding flanged fittings to posts at base with set screws. - 6. Secure fixed flanged fittings to concrete with expansion bolts. - 7. Secure posts to steel with welds. - B. Aluminum Railing, Stainless Steel Railing, and Ornamental Railing Posts: - 1. Install pipe sleeves in concrete formwork. - 2. Set posts in sleeve and pour grout to surface on exterior locations and to within 6 mm (1/4 inch) of surface for interior locations except to where posts are required to be removable. - 3. Apply beveled bead of urethane sealant over sleeve at post perimeter for exterior posts and flush with surface for interior posts as specified in Section 07 92 00, JOINT SEALANTS. ### C. Anchor to Walls: - 1. Anchor rails to concrete or solid masonry with machine screws through flanged fitting to steel plate. - a. Anchor steel plate to concrete or solid masonry with expansion bolts. - b. Anchor steel plate to hollow masonry with toggle bolts. - 2. Anchor flanged fitting with toggle bolt to steel support in frame walls. # D. Removable Rails: - Rest rails in brackets at each end and secure to bracket with stainless steel bolts and nuts where part of a continuous railing. - Rest rail posts in sleeves where not part of a continuous railing.Do not grout posts. ## E. Gates: - 1. Hang gate to swing as shown. - 2. Bolt gate hinges to jamb post with clamp on or through bolts. ### F. Chains: - 1. Eye bolt chains to pipe posts. - 2. Eye bolt anchoring at walls. - a. Expansion bolt to concrete or solid masonry. - b. Toggle bolt to hollow masonry of frame wall installed support. ### G. Handrails: - 1. Anchor brackets for metal handrails as detailed. - 2. Install brackets within 300 mm (12 inches) of return of walls, and at evenly spaced intermediate points not exceeding 1200 mm (4 feet) on centers unless shown otherwise. - 3. Expansion bolt to concrete or solid masonry. - 4. Toggle bolt to installed supporting frame wall and to hollow masonry unless shown otherwise. #### 3.15 CATWALK AND PLATFORMS - A. Expansion bolt members to concrete unless shown otherwise. - B. Bolt or weld structural components together including ladders and stairs to support system. - C. Weld railings to structural framing. - D. Bolt or weld walk surface to structural framing. - E. Smooth field welds and spot prime damaged prime paint surface. - F. Fasten removable members with stainless steel fasteners. # 3.16 SIDEWALK DOOR, TRAP DOORS, AND FRAMES - A. Set frame flush with finished concrete slab or curb. - B. Secure well linings to structure with expansion bolts unless shown otherwise. - C. Bolt ceiling hatch to well lining angle brace and to angle iron frames near corners and 300 mm (12 inches) on centers with not less than 9 mm (3/8 inch) roundhead machine screws. - D. Coordinate sidewalk door drain connections with plumbing work. # 3.17 SCREENED ACCESS DOOR - A. Set frame in opening so that clearance at jambs is equal and secure with expansion bolts. - B. Use shims at bolts to prevent deformation of frame members in prepared openings. - C. Set frame in mortar bed and build in anchors as the masonry work progresses. - D. Grout jambs solid with mortar. - E. Secure insect screen to inside of door with stainless steel fasteners on doors in exterior walls. ## 3.18 STEEL COMPONENTS FOR MILLWORK ITEMS Coordinate and deliver to Millwork fabricator for assembly where millwork items are secured to metal fabrications. VA Tomah Medical Center, WI Replace Chiller-Building 403 100% Bid Documents ## 3.19 CLEAN AND ADJUSTING - A. Adjust movable parts including hardware to operate as designed without binding or
deformation of the members centered in the opening or frame and, where applicable, contact surfaces fit tight and even without forcing or warping the components. - B. Clean after installation exposed prefinished and plated items and items fabricated from stainless steel, aluminum and copper alloys, as recommended by the metal manufacture and protected from damage until completion of the project. - - - E N D - - - 05 50 00- 28 # SECTION 07 84 00 FIRESTOPPING # PART 1 - GENERAL ## 1.1 DESCRIPTION: - A. Provide UL or equivalent approved firestopping system for the closures of openings in walls, floors, and roof decks against penetration of flame, heat, and smoke or gases in fire resistant rated construction. - B. Provide UL or equivalent approved firestopping system for the closure of openings in walls against penetration of gases or smoke in smoke partitions. ## 1.2 RELATED WORK: - A. Sealants and application: Section 07 92 00, JOINT SEALANTS. - B. Fire and smoke damper assemblies in ductwork: Section 23 31 00, HVAC DUCTS AND CASINGS #### 1.3 SUBMITTALS: - A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. - B. Installer qualifications. - C. Inspector qualifications. - D. Manufacturers literature, data, and installation instructions for types of firestopping and smoke stopping used. - E. List of FM, UL, or WH classification number of systems installed. - F. Certified laboratory test reports for ASTM E814 tests for systems not listed by FM, UL, or WH proposed for use. - G. Submit certificates from manufacturer attesting that firestopping materials comply with the specified requirements. # 1.4 DELIVERY AND STORAGE: - A. Deliver materials in their original unopened containers with manufacturer's name and product identification. - B. Store in a location providing protection from damage and exposure to the elements. ## 1.5 QUALITY ASSURANCE: - A. FM, UL, or WH or other approved laboratory tested products will be acceptable. - B. Installer Qualifications: A firm that has been approved by FM Global according to FM Global 4991 or been evaluated by UL and found to comply with UL's "Qualified Firestop Contractor Program Requirements." Submit qualification data. C. Inspector Qualifications: Contractor to engage a qualified inspector to perform inspections and final reports. The inspector to meet the criteria contained in ASTM E699 for agencies involved in quality assurance and to have a minimum of two years' experience in construction field inspections of firestopping systems, products, and assemblies. The inspector to be completely independent of, and divested from, the Contractor, the installer, the manufacturer, and the supplier of material or item being inspected. Submit inspector qualifications. #### 1.6 APPLICABLE PUBLICATIONS - A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced in the text by the basic designation only. - B. ASTM International (ASTM): E2393-10a.....Standard Practice for On-Site Inspection of Installed Fire Resistive Joint Systems and Perimeter Fire Barriers # C. FM Global (FM): Annual Issue Approval Guide Building Materials 4991-13......Approval of Firestop Contractors D. Underwriters Laboratories, Inc. (UL): Annual Issue Building Materials Directory Annual Issue Fire Resistance Directory 723-10(2008)......Standard for Test for Surface Burning Characteristics of Building Materials 1479-04(R2014).....Fire Tests of Through-Penetration Firestops E. Intertek Testing Services - Warnock Hersey (ITS-WH): Annual Issue Certification Listings 07 84 00 - 2 F. Environmental Protection Agency (EPA): 40 CFR 59(2014)......National Volatile Organic Compound Emission Standards for Consumer and Commercial Products # PART 2 - PRODUCTS #### 2.1 FIRESTOP SYSTEMS: - A. Provide either factory built (Firestop Devices) or field erected (through-Penetration Firestop Systems) to form a specific building system maintaining required integrity of the fire barrier and stop the passage of gases or smoke. Firestop systems to accommodate building movements without impairing their integrity. - B. Through-penetration firestop systems and firestop devices tested in accordance with ASTM E814 or UL 1479 using the "F" or "T" rating to maintain the same rating and integrity as the fire barrier being sealed. "T" ratings are not required for penetrations smaller than or equal to 101 mm (4 in.) nominal pipe or 0.01 sq. m (16 sq. in.) in overall cross sectional area. - C. Products requiring heat activation to seal an opening by its intumescence are not permitted by VA Fire and Safety for use in firestop systems. - D. Firestop sealants used for firestopping or smoke sealing to have the following properties: - 1. Contain no flammable or toxic solvents. - 2. Release no dangerous or flammable out gassing during the drying or curing of products. - 3. Water-resistant after drying or curing and unaffected by high humidity, condensation or transient water exposure. - 4. When installed in exposed areas, capable of being sanded and finished with similar surface treatments as used on the surrounding wall or floor surface. - E. Firestopping system or devices used for penetrations by glass pipe, plastic pipe or conduits, unenclosed cables, or other non-metallic materials to have following properties: - 1. Classified for use with the particular type of penetrating material used. - 2. Penetrations containing loose electrical cables, computer data cables, and communications cables protected using firestopping systems that allow unrestricted cable changes without damage to the seal. - F. Maximum flame spread of 25 and smoke development of 50 when tested in accordance with ASTM E84 or UL 723. Material to be an approved firestopping material as listed in UL Fire Resistance Directory or by a nationally recognized testing laboratory. - G. FM, UL, or WH rated or tested by an approved laboratory in accordance with ASTM E814. - H. Materials to be nontoxic and noncarcinogen at all stages of application or during fire conditions and to not contain hazardous chemicals. Provide firestop material that is free from Ethylene Glycol, PCB, MEK, and asbestos. - I. For firestopping exposed to view, traffic, moisture, and physical damage, provide products that do not deteriorate when exposed to these conditions. - 1. For piping penetrations for plumbing and wet-pipe sprinkler systems, provide moisture-resistant through-penetration firestop systems. - 2. For floor penetrations with annular spaces exceeding 101 mm (4 in.) or more in width and exposed to possible loading and traffic, provide firestop systems capable of supporting the floor loads involved either by installing floor plates or by other means acceptable to the firestop manufacturer. - 3. For penetrations involving insulated piping, provide throughpenetration firestop systems not requiring removal of insulation. ## 2.2 SMOKE STOPPING IN SMOKE PARTITIONS: - A. Provide silicone sealant in smoke partitions as specified in Section 07 92 00, JOINT SEALANTS. - B. Provide mineral fiber filler and bond breaker behind sealant. - C. Sealants to have a maximum flame spread of 25 and smoke developed of 50 when tested in accordance with ASTM E84. - D. When used in exposed areas capable of being sanded and finished with similar surface treatments as used on the surrounding wall or floor surface. ## PART 3 - EXECUTION ## 3.1 EXAMINATION: - A. Submit product data and installation instructions, as required by article, submittals, after an on-site examination of areas to receive firestopping. - B. Examine substrates and conditions with installer present for compliance with requirements for opening configuration, penetrating items, substrates, and other conditions affecting performance of firestopping. Do not proceed with installation until unsatisfactory conditions have been corrected. #### 3.2 PREPARATION: - A. Remove dirt, grease, oil, laitance and form-release agents from concrete, loose materials, or other substances that prevent adherence and bonding or application of the firestopping or smoke stopping materials. - B. Remove insulation on insulated pipe for a distance of 150 mm (6 inches) on each side of the fire rated assembly prior to applying the firestopping materials unless the firestopping materials are tested and approved for use on insulated pipes. - C. Prime substrates where required by joint firestopping system manufacturer using that manufacturer's recommended products and methods. Confine primers to areas of bond; do not allow spillage and migration onto exposed surfaces. - D. Masking Tape: Apply masking tape to prevent firestopping from contacting adjoining surfaces that will remain exposed upon completion of work and that would otherwise be permanently stained or damaged by such contact or by cleaning methods used to remove smears from firestopping materials. Remove tape as soon as it is possible to do so without disturbing seal of firestopping with substrates. #### 3.3 INSTALLATION: - A. Do not begin firestopping work until the specified material data and installation instructions of the proposed firestopping systems have been submitted and approved. - B. Install firestopping systems with smoke stopping in accordance with FM, UL, WH, or other approved system details and installation instructions. - C. Install smoke stopping seals in smoke partitions. ## 3.4 CLEAN-UP: - A. As work on each floor is completed, remove materials, litter, and debris. - B. Clean up spills of liquid type materials. - C. Clean off excess fill materials and sealants adjacent to openings and joints as work progresses by methods and with cleaning materials approved by manufacturers of firestopping products and of products in which opening and joints occur. - D. Protect firestopping during and after curing period from contact with contaminating substances or from damage resulting from construction operations or other causes so that they are
without deterioration or damage at time of Substantial Completion. If, despite such protection, damage or deterioration occurs, cut out and remove damaged or deteriorated firestopping immediately and install new materials to provide firestopping complying with specified requirements. ## 3.5 INSPECTIONS AND ACCEPTANCE OF WORK: - A. Do not conceal or enclose firestop assemblies until inspection is complete and approved by the Contracting Officer Representative (COR). - B. Furnish service of approved inspector to inspect firestopping in accordance with ASTM E2393 and ASTM E2174 for firestop inspection, and document inspection results. Submit written reports indicating locations of and types of penetrations and type of firestopping used at each location; type is to be recorded by UL listed printed numbers. - - - E N D - - - # SECTION 07 92 00 JOINT SEALANTS ## PART 1 - GENERAL #### 1.1 DESCRIPTION: A. This section covers interior and exterior sealant and their application, wherever required for complete installation of building materials or systems. ## 1.2 RELATED WORK (INCLUDING BUT NOT LIMITED TO THE FOLLOWING): - A. Firestopping Penetrations: Section 07 84 00, FIRESTOPPING. - B. COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION. ## 1.3 QUALITY ASSURANCE: - A. Installer Qualifications: An experienced installer with a minimum of three (3) years' experience and who has specialized in installing joint sealants similar in material, design, and extent to those indicated for this Project and whose work has resulted in joint-sealant installations with a record of successful in-service performance. Submit qualification. - B. Source Limitations: Obtain each type of joint sealant through one (1) source from a single manufacturer. - C. Product Testing: Obtain test results from a qualified testing agency based on testing current sealant formulations within a 12-month period. - 1. Testing Agency Qualifications: An independent testing agency qualified according to ASTM C1021. - 2. Test elastomeric joint sealants for compliance with requirements specified by reference to ASTM C920, and where applicable, to other standard test methods. - 3. Test other joint sealants for compliance with requirements indicated by referencing standard specifications and test methods. - D. Lab Tests: Submit samples of materials that will be in contact or affect joint sealants to joint sealant manufacturers for tests as follows: - Adhesion Testing: Before installing elastomeric sealants, test their adhesion to protect joint substrates according to the method in ASTM C794 to determine if primer or other specific joint preparation techniques are required. 07 92 00 - 1 - Compatibility Testing: Before installing elastomeric sealants, determine compatibility when in contact with glazing and gasket materials. - 3. Stain Testing: Perform testing per ASTM C1248 on interior and exterior sealants to determine if sealants or primers will stain adjacent surfaces. No sealant work is to start until results of these tests have been submitted to the Contracting Officer Representative (COR) and the COR has given written approval to proceed with the work. - 2. Conduct field tests for each application indicated below: - a. Each type of elastomeric sealant and joint substrate indicated. - b. Each type of non-elastomeric sealant and joint substrate indicated. - 3. Notify COR seven (7) days in advance of dates and times when test joints will be erected. // ## 1.4 CERTIFICATION: A. Contractor is to submit to the COR written certification that joints are of the proper size and design, that the materials supplied are compatible with adjacent materials and backing, that the materials will properly perform to provide permanent watertight, airtight or vapor tight seals (as applicable), and that materials supplied meet specified performance requirements. # 1.5 SUBMITTALS: A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. - B. Installer qualifications. - C. Contractor certification. - D. Manufacturer's installation instructions for each product used. - E. Cured samples of exposed sealants for each color. - F. Manufacturer's Literature and Data: - 1. Primers - 2. Sealing compound, each type, including compatibility when different sealants are in contact with each other. - G. Manufacturer warranty. ## 1.6 PROJECT CONDITIONS: A. Environmental Limitations: - 1. Do not proceed with installation of joint sealants under following conditions: - a. When ambient and substrate temperature conditions are outside limits permitted by joint sealant manufacturer or are below 4.4 degrees C (40 degrees F). - b. When joint substrates are wet. #### B. Joint-Width Conditions: Do not proceed with installation of joint sealants where joint widths are less than those allowed by joint sealant manufacturer for applications indicated. #### C. Joint-Substrate Conditions: Do not proceed with installation of joint sealants until contaminants capable of interfering with adhesion are removed from joint substrates. ## 1.7 DELIVERY, HANDLING, AND STORAGE: - A. Deliver materials in manufacturers' original unopened containers, with brand names, date of manufacture, shelf life, and material designation clearly marked thereon. - B. Carefully handle and store to prevent inclusion of foreign materials. - C. Do not subject to sustained temperatures exceeding 32 degrees C (90 degrees F) or less than 5 degrees C (40 degrees F). #### 1.8 DEFINITIONS: - A. Definitions of terms in accordance with ASTM C717 and as specified. - B. Backing Rod: A type of sealant backing. - C. Bond Breakers: A type of sealant backing. - D. Filler: A sealant backing used behind a back-up rod. # 1.9 WARRANTY: - A. Construction Warranty: Comply with FAR clause 52.246-21 "Warranty of Construction". - B. Manufacturer Warranty: Manufacturer shall warranty their sealant for a minimum of five (5) years from the date of installation and final acceptance by the Government. Submit manufacturer warranty. ## 1.10 APPLICABLE PUBLICATIONS: - A. Publications listed below form a part of this specification to extent referenced. Publications are referenced in text by basic designation only. - B. ASTM International (ASTM): | | C509-06 | .Elastomeric Cellular Preformed Gasket and | | | | |--|---|--|--|--|--| | | Sealing Material | | | | | | | C612-14 | .Mineral Fiber Block and Board Thermal | | | | | | | Insulation | | | | | | C717-14a | .Standard Terminology of Building Seals and | | | | | | | Sealants | | | | | | C734-06(R2012) | .Test Method for Low-Temperature Flexibility of | | | | | | | Latex Sealants after Artificial Weathering | | | | | | C794-10 | .Test Method for Adhesion-in-Peel of Elastomeric | | | | | | | Joint Sealants | | | | | | C919-12 | .Use of Sealants in Acoustical Applications. | | | | | C920-14aElastomeric Joint Sealants. | | | | | | | C1021-08(R2014)Laboratories Engaged in Testing of Buildi | | | | | | | Sealants | | | | | | | | C1193-13 | .Standard Guide for Use of Joint Sealants. | | | | | | C1248-08(R2012) | .Test Method for Staining of Porous Substrate by | | | | | Joint Sealants | | | | | | | | C1330-02(R2013) | .Cylindrical Sealant Backing for Use with Cold | | | | | | Liquid Applied Sealants | | | | | | | C1521-13 | .Standard Practice for Evaluating Adhesion of | | | | | | | Installed Weatherproofing Sealant Joints | | | | | | D217-10Test Methods for Cone Penetration of | | | | | | | | Lubricating Grease | | | | | | D412-06a(R2013) | .Test Methods for Vulcanized Rubber and | | | | | | | Thermoplastic Elastomers-Tension | | | | | | D1056-14 | .Specification for Flexible Cellular Materials- | | | | | | | Sponge or Expanded Rubber | | | | | | E84-09 | .Surface Burning Characteristics of Building | | | | | | | Materials | | | | | C. | Sealant, Waterproofing | and Restoration Institute (SWRI). | | | | | | The Professionals' Guide | | | | | | D. | Environmental Protection Agency (EPA): | | | | | | | 40 CFR 59(2014) | .National Volatile Organic Compound Emission | | | | | | | | | | | # PART 2 - PRODUCTS # 2.1 SEALANTS: A. Exterior Sealants: Standards for Consumer and Commercial Products - 1. Horizontal surfaces, provide ASTM C920, Type S or M, Grade P, Class 25, Use T. - 3. Provide location(s) of exterior sealant as follows: - a. Joints formed where frames and subsills of windows, doors, louvers, and vents adjoin masonry, concrete, or metal frames. Provide sealant at exterior surfaces of exterior wall penetrations. - b. Metal to metal. - c. Masonry to masonry or stone. - d. Stone to stone. - e. Cast stone to cast stone. - f. Masonry expansion and control joints. - g. Wood to masonry. - h. Masonry joints where shelf angles occur. - i. Voids where items penetrate exterior walls. - j. Metal reglets, where flashing is inserted into masonry joints, and where flashing is penetrated by coping dowels. #### B. Floor Joint Sealant: - 1. ASTM C920, Type S or M, Grade P, Class 25, Use T. - 2. Provide location(s) of floor joint sealant as follows. - a. Seats of metal thresholds exterior doors. - b. Control and expansion joints in floors, slabs, ceramic tile, and walkways. ## C. Interior Sealants: - 1. VOC Content of Interior Sealants: Sealants and sealant primers used inside the weatherproofing system are to comply with the following limits for VOC content when calculated according to 40 CFR 59, (EPA Method 24): - a. Architectural Sealants: 250 g/L. - b. Sealant Primers for Nonporous Substrates: 250 g/L. - c. Sealant Primers for Porous Substrates: 775 g/L. - 2. Vertical and Horizontal Surfaces: ASTM C920, Type S or M, Grade NS, Class 25, Use NT. - 3. Food Service: Use a Vinyl Acetate Homopolymer, or other low VOC, non-toxic sealant approved for use in food preparation areas. - 4. Provide location(s) of interior sealant as follows: - a. Typical narrow joint 6 mm, (1/4
inch) or less at walls and adjacent components. - b. Perimeter of doors, windows, access panels which adjoin concrete or masonry surfaces. - c. Interior surfaces of exterior wall penetrations. - d. Joints at masonry walls and columns, piers, concrete walls or exterior walls. - e. Perimeter of lead faced control windows and plaster or gypsum wallboard walls. - f. Exposed isolation joints at top of full height walls. - g. Joints between bathtubs and ceramic tile; joints between shower receptors and ceramic tile; joints formed where nonplanar tile surfaces meet. - h. Joints formed between tile floors and tile base cove; joints between tile and dissimilar materials; joints occurring where substrates change. - i. Behind escutcheon plates at valve pipe penetrations and showerheads in showers. #### D. Acoustical Sealant: - 1. Conforming to ASTM C919; flame spread of 25 or less; and a smoke developed rating of 50 or less when tested in accordance with ASTM E84. Acoustical sealant have a consistency of 250 to 310 when tested in accordance with ASTM D217; remain flexible and adhesive after 500 hours of accelerated weathering as specified in ASTM C734; and be non-staining. - 2. Provide location(s) of acoustical sealant as follows: - a. Exposed acoustical joint at sound rated partitions. - b. Concealed acoustic joints at sound rated partitions. - c. Joints where item pass-through sound rated partitions. ## 2.2 COLOR: - A. Sealants used with exposed masonry are to match color of mortar joints. - B. Sealants used with unpainted concrete are to match color of adjacent concrete. - C. Color of sealants for other locations to be light gray or aluminum, unless otherwise indicated in construction documents. #### 2.3 JOINT SEALANT BACKING: - A. General: Provide sealant backings of material and type that are nonstaining; are compatible with joint substrates, sealants, primers, and other joint fillers; and are approved for applications indicated by sealant manufacturer based on field experience and laboratory testing. - B. Cylindrical Sealant Backings: ASTM C1330, of type indicated below and of size and density to control sealant depth and otherwise contribute to producing optimum sealant performance: - 1. Type C: Closed-cell material with a surface skin. - C. Elastomeric Tubing Sealant Backings: Neoprene, butyl, EPDM, or silicone tubing complying with ASTM D1056 or synthetic rubber (ASTM C509), nonabsorbent to water and gas, and capable of remaining resilient at temperatures down to minus 32 degrees C (minus 26 degrees F). Provide products with low compression set and of size and shape to provide a secondary seal, to control sealant depth, and otherwise contribute to optimum sealant performance. - D. Bond-Breaker Tape: Polyethylene tape or other plastic tape recommended by sealant manufacturer for preventing sealant from adhering to rigid, inflexible joint-filler materials or joint surfaces at back of joint where such adhesion would result in sealant failure. Provide self-adhesive tape where applicable. ## 2.4 WEEPS: NOT USED ## 2.5 FILLER: - A. Mineral fiberboard: ASTM C612, Class 1. - B. Thickness same as joint width. - C. Depth to fill void completely behind back-up rod. # 2.6 PRIMER: - A. As recommended by manufacturer of caulking or sealant material. - B. Stain free type. # 2.7 CLEANERS-NON POROUS SURFACES: A. Chemical cleaners compatible with sealant and acceptable to manufacturer of sealants and sealant backing material. Cleaners to be free of oily residues and other substances capable of staining or harming joint substrates and adjacent non-porous surfaces and formulated to promote adhesion of sealant and substrates. #### PART 3 - EXECUTION ## 3.1 INSPECTION: - A. Inspect substrate surface for bond breaker contamination and unsound materials at adherent faces of sealant. - B. Coordinate for repair and resolution of unsound substrate materials. - C. Inspect for uniform joint widths and that dimensions are within tolerance established by sealant manufacturer. #### 3.2 PREPARATIONS: - A. Prepare joints in accordance with manufacturer's instructions and SWRI (The Professionals' Guide). - B. Clean surfaces of joint to receive caulking or sealants leaving joint dry to the touch, free from frost, moisture, grease, oil, wax, lacquer paint, or other foreign matter that would tend to destroy or impair adhesion - Clean porous joint substrate surfaces by brushing, grinding, blast cleaning, mechanical abrading, or a combination of these methods to produce a clean, sound substrate capable of developing optimum bond with joint sealants. - 2. Remove loose particles remaining from above cleaning operations by vacuuming or blowing out joints with oil-free compressed air. Porous joint surfaces include but are not limited to the following: - a. Concrete. - b. Masonry. - c. Unglazed surfaces of ceramic tile. - 3. Remove laitance and form-release agents from concrete. - 4. Clean nonporous surfaces with chemical cleaners or other means that do not stain, harm substrates, or leave residues capable of interfering with adhesion of joint sealants. Nonporous surfaces include but are not limited to the following: - a. Metal. - b. Glass. - c. Porcelain enamel. - d. Glazed surfaces of ceramic tile. - C. Do not cut or damage joint edges. - D. Apply non-staining masking tape to face of surfaces adjacent to joints before applying primers, caulking, or sealing compounds. - 1. Do not leave gaps between ends of sealant backings. - 2. Do not stretch, twist, puncture, or tear sealant backings. - 3. Remove absorbent sealant backings that have become wet before sealant application and replace them with dry materials. - E. Apply primer to sides of joints wherever required by compound manufacturer's printed instructions or as indicated by pre-construction joint sealant substrate test. - 1. Apply primer prior to installation of back-up rod or bond breaker tape. - Use brush or other approved means that will reach all parts of joints. Avoid application to or spillage onto adjacent substrate surfaces. ## 3.3 BACKING INSTALLATION: - A. Install backing material, to form joints enclosed on three sides as required for specified depth of sealant. - B. Where deep joints occur, install filler to fill space behind the backing rod and position the rod at proper depth. - C. Cut fillers installed by others to proper depth for installation of backing rod and sealants. - D. Install backing rod, without puncturing the material, to a uniform depth, within plus or minus 3 mm (1/8 inch) for sealant depths specified. - E. Where space for backing rod does not exist, install bond breaker tape strip at bottom (or back) of joint so sealant bonds only to two opposing surfaces. ## 3.4 SEALANT DEPTHS AND GEOMETRY: - A. At widths up to 6 mm (1/4 inch), sealant depth equal to width. - B. At widths over 6 mm (1/4 inch), sealant depth 1/2 of width up to 13 mm (1/2 inch) maximum depth at center of joint with sealant thickness at center of joint approximately 1/2 of depth at adhesion surface. #### 3.5 INSTALLATION: # A. General: - 1. Apply sealants and caulking only when ambient temperature is between 5 degrees C and 38 degrees C (40 degrees and 100 degrees F). - 2. Do not install polysulfide base sealants where sealant may be exposed to fumes from bituminous materials, or where water vapor in continuous contact with cementitious materials may be present. - 3. Do not install sealant type listed by manufacture as not suitable for use in locations specified. - 4. Apply caulking and sealing compound in accordance with manufacturer's printed instructions. - 5. Avoid dropping or smearing compound on adjacent surfaces. - 6. Fill joints solidly with compound and finish compound smooth. - 7. Tool exposed joints to form smooth and uniform beds, with slightly concave surface conforming to joint configuration per Figure 5A in ASTM C1193 unless shown or specified otherwise in construction documents. Remove masking tape immediately after tooling of sealant and before sealant face starts to "skin" over. Remove any excess sealant from adjacent surfaces of joint, leaving the working in a clean finished condition. - 8. Finish paving or floor joints flush unless joint is otherwise detailed. - 9. Apply compounds with nozzle size to fit joint width. - 10. Test sealants for compatibility with each other and substrate. Use only compatible sealant. Submit test reports. - 11. Replace sealant which is damaged during construction process. - B. For application of sealants, follow requirements of ASTM C1193 unless specified otherwise. Take all necessary steps to prevent three-sided adhesion of sealants. - C . Interior Sealants: Where gypsum board partitions are of sound rated, fire rated, or smoke barrier construction, follow requirements of ASTM C919 only to seal all cut-outs and intersections with the adjoining construction unless specified otherwise. - Apply a 6 mm (1/4 inch) minimum bead of sealant each side of runners (tracks), including those used at partition intersections with dissimilar wall construction. - 2. Coordinate with application of gypsum board to install sealant immediately prior to application of gypsum board. - 3. Partition intersections: Seal edges of face layer of gypsum board abutting intersecting partitions, before taping and finishing or application of veneer plaster-joint reinforcing. - 4. Openings: Apply a 6 mm (1/4 inch) bead of sealant around all cutouts to seal openings of electrical boxes, ducts, pipes and similar penetrations. To seal electrical boxes, seal sides and backs. 5. Control Joints: Before control joints are installed, apply sealant in back of control joint to reduce flanking path for sound through control joint. # 3.6 FIELD QUALITY CONTROL: - A. Field-Adhesion Testing: Field-test joint-sealant adhesion to joint substrates according to Method A, Field-Applied Sealant Joint Hand Pull Tab, in Appendix X1 in ASTM C1193 or Method A, Tail Procedure, in ASTM C1521. - 1. Extent of Testing:
Test completed elastomeric sealant joints as follows: - a. Perform 10 tests for first 305 m (1000 feet) of joint length for each type of elastomeric sealant and joint substrate. - b. Perform one test for each 305 m (1000 feet) of joint length thereafter or one test per each floor per elevation. - B. Inspect joints for complete fill, for absence of voids, and for joint configuration complying with specified requirements. Record results in a field adhesion test log. - C. Inspect tested joints and report on following: - 1. Whether sealants in joints connected to pulled-out portion failed to adhere to joint substrates or tore cohesively. Include data on pull distance used to test each type of product and joint substrate. - 2. Compare these results to determine if adhesion passes sealant manufacturer's field-adhesion hand-pull test criteria. - 3. Whether sealants filled joint cavities and are free from voids. - 4. Whether sealant dimensions and configurations comply with specified requirements. - D. Record test results in a field adhesion test log. Include dates when sealants were installed, names of persons who installed sealants, test dates, test locations, whether joints were primed, adhesion results and percent elongations, sealant fill, sealant configuration, and sealant dimensions. - E. Repair sealants pulled from test area by applying new sealants following same procedures used to originally seal joints. Ensure that original sealant surfaces are clean and new sealant contacts original sealant. - F. Evaluation of Field-Test Results: Sealants not evidencing adhesive failure from testing or noncompliance with other indicated VA Tomah Medical Center, WI Replace Chiller-Building 403 100% Bid Documents requirements, will be considered satisfactory. Remove sealants that fail to adhere to joint substrates during testing or to comply with other requirements. Retest failed applications until test results prove sealants comply with indicated requirements. # 3.7 CLEANING: - A. Fresh compound accidentally smeared on adjoining surfaces: Scrape off immediately and rub clean with a solvent as recommended by manufacturer of the adjacent material or if not otherwise indicated by the caulking or sealant manufacturer. - B. Leave adjacent surfaces in a clean and unstained condition. - - - E N D - - - 07 92 00 - 12 # SECTION 09 91 00 PAINTING #### PART 1-GENERAL #### 1.1 DESCRIPTION - A. Section specifies prime coats which may be applied in shop under other sections. - B. Painting includes shellacs, stains, varnishes, coatings specified, and striping or markers and identity markings. #### 1.2 RELATED WORK A. Shop prime painting of steel and ferrous metals: Division 23 - HEATING, VENTILATION AND AIR-CONDITIONING, Division 26 - ELECTRICAL #### 1.3 SUBMITTALS - A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES - B. Manufacturer's Literature and Data: Before work is started, or sample panels are prepared, submit manufacturer's literature, the current Master Painters Institute (MPI) "Approved Product List" indicating brand label, product name and product code as of the date of contract award, will be used to determine compliance with the submittal requirements of this specification. The Contractor may choose to use subsequent MPI "Approved Product List", however, only one list may be used for the entire contract and each coating system is to be from a single manufacturer. All coats on a particular substrate must be from a single manufacturer. No variation from the MPI "Approved Product List" where applicable is acceptable. ## C. Samples: - 1. After painters' materials have been approved and before work is started submit samples showing each type of finish and color specified. - 2. Samples to show color: Composition board, 150 by 150 (6 inch by 6 inch). - D. Manufacturers' Certificates indicating compliance with specified requirements: - 1. Manufacturer's paint substituted for Federal Specification paints meets or exceeds performance of paint specified. - 2. High temperature aluminum paint. - 3. Epoxy coating. - 4. Intumescent clear coating or fire retardant paint. - 5. Plastic floor coating. ## 1.4 DELIVERY AND STORAGE - A. Deliver materials to site in manufacturer's sealed container marked to show following: - 1. Name of manufacturer. - 2. Product type. - 3. Batch number. - 4. Instructions for use. - 5. Safety precautions. - B. In addition to manufacturer's label, provide a label legibly printed as following: - 1. Federal Specification Number, where applicable, and name of material. - 2. Surface upon which material is to be applied. - 3. If paint or other coating, state coat types; prime, body or finish. - C. Maintain space for storage, and handling of painting materials and equipment in a neat and orderly condition to prevent spontaneous combustion from occurring or igniting adjacent items. - D. Store materials at site at least 24 hours before using, at a temperature between 18 and 30 degrees C (65 and 85 degrees F). ## 1.5 APPLICABLE PUBLICATIONS - A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced in the text by basic designation only. - B. American Conference of Governmental Industrial Hygienists (ACGIH): ACGIH TLV-BKLT-2009.....Threshold Limit Values (TLV) for Chemical Substances and Physical Agents and Biological Exposure Indices (BEIs) - ACGIH TLV-DOC-2009.....Documentation of Threshold Limit Values and Biological Exposure Indices, (Seventh Edition) - C. American National Standards Institute (ANSI): - Al3.1-07......Scheme for the Identification of Piping Systems - D. American Society for Testing and Materials (ASTM): D260-86 (2001).....Boiled Linseed Oil - E. Federal Specifications (Fed Spec): - TT-P-1411A......Paint, Copolymer-Resin, Cementitious (For Waterproofing Concrete and Masonry Walls) (CEP) - F. Master Painters Institute (MPI): - No. 4-08......Interior/ Exterior Latex Block Filler - No. 5-02.....Exterior Alkyd Wood Primer | 1 | No. | 7-02Exterior Oil Wood Primer | |---|-----|--| | 1 | No. | 8-07Exterior Alkyd, Flat MPI Gloss Level 1 (EO) | | 1 | No. | 9-07Exterior Alkyd Enamel MPI Gloss Level 6 (EO) | | 1 | No. | 10-07Exterior Latex, Flat (AE) | | 1 | No. | 11-07Exterior Latex, Semi-Gloss (AE) | | 1 | No. | 26-03Cementitious Galvanized Metal Primer | | 1 | No. | 27-07Exterior / Interior Alkyd Floor Enamel, Gloss (FE) | | 1 | No. | 43-06Interior Satin Latex, MPI Gloss Level 4 | | 1 | No. | 44-08Interior Low Sheen Latex, MPI Gloss Level 2 | | 1 | No. | 45-02Interior Primer Sealer | | 1 | No. | 46-04Interior Enamel Undercoat | | 1 | No. | 47-02Interior Alkyd, Semi-Gloss, MPI Gloss Level 5 (AK) | | 1 | No. | 48-05Interior Alkyd, Gloss, MPI Gloss Level 6 (AK) | | 1 | No. | 49-02Interior Alkyd, Flat, MPI Gloss Level 1 (AK) | | 1 | No. | 50-08Interior Latex Primer Sealer | | 1 | No. | 51-02Interior Alkyd, Eggshell, MPI Gloss Level 3 | | 1 | No. | 52-06Interior Latex, MPI Gloss Level 3 (LE) | | 1 | No. | 53-06Interior Latex, Flat, MPI Gloss Level 1 (LE) | | 1 | No. | 54-06Interior Latex, Semi-Gloss, MPI Gloss Level 5 (LE) | | 1 | No. | 59-07Interior/Exterior Alkyd Porch & Floor Enamel, Low | | | | Gloss (FE) | | 1 | No. | 60-07Interior/Exterior Latex Porch & Floor Paint, Low | | | | Gloss | | 1 | No. | 68-07Interior/ Exterior Latex Porch & Floor Paint, | | | | Gloss | | 1 | No. | 77-08Epoxy Cold Cured, Gloss (EC) | | 1 | No. | 79-08Marine Alkyd Metal Primer | | 1 | No. | 94-07Exterior Alkyd, Semi-Gloss (EO) | | 1 | No. | 95-03Fast Drying Metal Primer | | 1 | No. | 101-08Epoxy Anti-Corrosive Metal Primer | | 1 | No. | 108-08 | | 1 | No. | 114-06Interior Latex, Gloss (LE) and (LG) | | 1 | No. | 119-07Exterior Latex, High Gloss (acrylic) (AE) | | 1 | No. | 134-06Primer, Galvanized, Water Based | | 1 | No. | 135-06Non-Cementitious Galvanized Primer | | 1 | No. | 138-06Interior High Performance Latex, MPI Gloss Level 2 | | | | (LF) | | | | | | | No. 139-06Interior High Performance Latex, MPI Gloss Level 3 | | | | | | |----|--|--|--|--|--|--| | | (LL) | | | | | | | | No. 140-06Interior High Performance Latex, MPI Gloss Level 4 | | | | | | | | No. 141-06Interior High Performance Latex (SG) MPI Gloss | | | | | | | | Level 5 | | | | | | | G. | G. Steel Structures Painting Council (SSPC): SSPC SP 1-04Solvent Cleaning | | | | | | | | | | | | | | | | SSPC SP 2-04Hand Tool Cleaning | | | | | | | | SSPC SP 3-04Power Tool Cleaning | | | | | | #### PART 2 - PRODUCTS #### 2.1 MATERIALS - A. Wood Sealer: thinned with thinner recommended by manufacturer at rate of about one part of thinner to four parts of varnish. - B. Plastic Tape: - Pigmented vinyl plastic film in colors as specified in Section 09 06 SCHEDULE FOR FINISHES or specified. - 2. Pressure sensitive adhesive back. - 3. Widths as shown. - C. Aluminum Paint (AP) - D. Exterior Alkyd, Flat (EO): MPI 8. - E. Exterior Alkyd Enamel (EO): MPI 9. - F. Exterior Latex, Flat (AE): MPI 10. - G. Exterior Latex, Semi-Gloss (AE): MPI 11. - H. Interior Satin Latex: MPI 43. - I. Interior Low Sheen Latex: MPI 44. - J. Interior Primer Sealer: MPI 45. - K. Interior Alkyd, Semi-Gloss (AK): MPI 47. - L. Interior Latex Primer Sealer: MPI 50. - M. Interior Alkyd, Eggshell: MPI 51 - N. Interior Latex, MPI Gloss Level 3 (LE): MPI 52. - O. Interior Latex, Flat, MPI Gloss Level 1 (LE): MPI 53. - P. Interior Latex, Semi-Gloss, MPI Gloss Level 5 (LE): MPI 54. - O. Interior / Exterior Alkyd Porch & Floor Enamel, Low Gloss (FE): MPI 59. - R. Interior/ Exterior Latex Porch & Floor Paint, Low Gloss: MPI 60. - S. Interior Alkyd Fire Retardant, Clear Top-Coat (ULC Approved) (FC) - T. Interior Latex Fire Retardant, Top-Coat (ULC Approved) (FR) - U. Interior/ Exterior Latex Porch & Floor Paint, gloss: MPI 68. - V. Epoxy Cold Cured, Gloss (EC): MPI 77. - W. Interior Wood Stain,
Semi-Transparent (WS) - X. Exterior Alkyd, Semi-Gloss (EO): MPI 94. - Y. Fast Drying Metal Primer: MPI 95. - Z. High Build Epoxy Coating - AA. Epoxy Anti-Corrosive Metal Primer: MPI 101. - BB. Interior latex, Gloss (LE) and (LG): MPI 114. - CC. Exterior Latex, High Gloss (acrylic) (AE): MPI 119. - DD. Waterborne Galvanized Primer: MPI 134. - EE. Non-Cementitious Galvanized Primer: MPI 135. #### 2.2 PAINT PROPERTIES - A. Use ready-mixed (including colors), except two component epoxies, polyurethanes, polyesters, paints having metallic powders packaged separately and paints requiring specified additives. - B. Where no requirements are given in the referenced specifications for primers, use primers with pigment and vehicle, compatible with substrate and finish coats specified. ## 2.3 REGULATORY REQUIREMENTS/QUALITY ASSURANCE - A. Paint materials shall conform to the restrictions of the local Environmental and Toxic Control jurisdiction. - Volatile Organic Compounds (VOC): VOC content of paint materials shall not exceed 10g/l for interior latex paints/primers and 50g/l for exterior latex paints and primers. - 2. Lead-Base Paint: - a. Lead based paint is not permitted to be used. - b. For lead-paint removal, see Section 02 83 33.13, LEAD-BASED PAINT REMOVAL AND DISPOSAL. - 3. Asbestos: Materials shall not contain asbestos. - 4. Chromate, Cadmium, Mercury, and Silica: Materials shall not contain zinc-chromate, strontium-chromate, Cadmium, mercury or mercury compounds or free crystalline silica. - 5. Human Carcinogens: Materials shall not contain any of the ACGIH-BKLT and ACGHI-DOC confirmed or suspected human carcinogens. - 6. Use high performance acrylic paints in place of alkyd paints, where possible. - VOC content for solvent-based paints shall not exceed 250g/l and shall not be formulated with more than one percent aromatic hydro carbons by weight. # 2.4 GLOSS/SHEEN A. Paint gloss shall be defined as the sheen rating of applied paint, in accordance with the following MPI Values | Gloss | Description | Units | Units | |-------|----------------------|--------------|--------------| | Level | | @ 60 degrees | @ 85 degrees | | G1 | Matte or Flat finish | 0 to 5 | 10 max. | | G2 | Velvet finish | 0 to 10 | 10 to 35 | | G3 | Eggshell finish | 10 to 25 | 10 to 35 | | G4 | Satin finish | 20 to 35 | 35 min. | | G5 | Semi-Gloss finish | 35 to 70 | | | G6 | Gloss finish | 70 to 85 | | | G7 | High-Gloss finish | > 85 | | #### 2.5 Finish and Colors - A. Colors shall be selected from a manufacturer's full range of colors. - B. Unless otherwise noted or scheduled, walls shall be painted the same color within a given area - C. Except as noted herein or indicated on the Finish Schedule, interior walls and ceiling surfaces shall be painted in accordance with the following criteria over appropriate prime/sealer coat. - 1. All areas not noted below): washable latex with G3 (eggshell) finish - 2. Public restrooms: Washable Latex with G5 (semi-gloss) finish. - 3. Wash, showerrooms: Epoxy (tile-like) G5 (semi-gloss) finish for wet surfaces ## PART 3 - EXECUTION ## 3.1 JOB CONDITIONS - A. Safety: Observe required safety regulations and manufacturer's warning and instructions for storage, handling and application of painting materials. - Take necessary precautions to protect personnel and property from hazards due to falls, injuries, toxic fumes, fire, explosion, or other harm. - 2. Deposit soiled cleaning rags and waste materials in metal containers approved for that purpose. Dispose of such items off the site at end of each day's work. - B. Atmospheric and Surface Conditions: - 1. Do not apply coating when air or substrate conditions are: - a. Less than 3 degrees C (5 degrees F) above dew point. - b. Below 10 degrees C (50 degrees F) or over 35 degrees C (95 degrees F), unless specifically pre-approved by the Contracting Officer and the product manufacturer. Under no circumstances shall application conditions exceed manufacturer recommendations. - 2. Maintain interior temperatures until paint dries hard. - 3. Do no exterior painting when it is windy and dusty. - 4. Do not paint in direct sunlight or on surfaces that the sun will soon warm. - 5. Apply only on clean, dry and frost free surfaces except as follows: - a. Apply water thinned acrylic and cementitious paints to damp (not wet) surfaces where allowed by manufacturer's printed instructions. - b. Dampened with a fine mist of water on hot dry days concrete and masonry surfaces to which water thinned acrylic and cementitious paints are applied to prevent excessive suction and to cool surface. # 6. Varnishing: - a. Apply in clean areas and in still air. - b. Before varnishing vacuum and dust area. - c. Immediately before varnishing wipe down surfaces with a tack rag. ## 3.2 SURFACE PREPARATION A. Method of surface preparation is optional, provided results of finish painting produce solid even color and texture specified with no overlays. # B. General: - 1. Remove prefinished items not to be painted such as lighting fixtures, escutcheon plates, hardware, trim, and similar items for reinstallation after paint is dried. - 2. Remove items for reinstallation and complete painting of such items and adjacent areas when item or adjacent surface is not accessible or finish is different. - 3. See other sections of specifications for specified surface conditions and prime coat. - 4. Clean surfaces for painting with materials and methods compatible with substrate and specified finish. Remove any residue remaining from cleaning agents used. Do not use solvents, acid, or steam on concrete and masonry. # C. Wood: - 1. Sand to a smooth even surface and then dust off. - 2. Sand surfaces showing raised grain smooth between each coat. - 3. Wipe surface with a tack rag prior to applying finish. - 4. Surface painted with an opaque finish: - a. Coat knots, sap and pitch streaks with Knot Sealer before applying paint. - b. Apply two coats of Knot Sealer over large knots. - 5. After application of prime or first coat of stain, fill cracks, nail and screw holes, depressions and similar defects with wood filler paste. Sand the surface to make smooth and finish flush with adjacent surface. - 6. Before applying finish coat, reapply wood filler paste if required, and sand surface to remove surface blemishes. Finish flush with adjacent surfaces. - 7. Fill open grained wood such as oak, walnut, ash and mahogany with Wood Filler Paste, colored to match wood color. - a. Thin filler in accordance with manufacturer's instructions for application. - b. Remove excess filler, wipe as clean as possible, dry, and sand as specified. ## D. Ferrous Metals: - Remove oil, grease, soil, drawing and cutting compounds, flux and other detrimental foreign matter in accordance with SSPC-SP 1 (Solvent Cleaning). - 2. Remove loose mill scale, rust, and paint, by hand or power tool cleaning, as defined in SSPC-SP 2 (Hand Tool Cleaning) and SSPC-SP 3 (Power Tool Cleaning). Exception: where high temperature aluminum paint is used, prepare surface in accordance with paint manufacturer's instructions. - 3. Fill dents, holes and similar voids and depressions in flat exposed surfaces of hollow steel doors and frames, access panels, roll-up steel doors and similar items specified to have semi-gloss or gloss finish with TT-F-322D (Filler, Two-Component Type, For Dents, Small Holes and Blow-Holes). Finish flush with adjacent surfaces. - a. This includes flat head countersunk screws used for permanent anchors. - b. Do not fill screws of item intended for removal such as glazing beads. - 4. Spot prime abraded and damaged areas in shop prime coat which expose bare metal with same type of paint used for prime coat. Feather edge of spot prime to produce smooth finish coat. - 5. Spot prime abraded and damaged areas which expose bare metal of factory finished items with paint as recommended by manufacturer of item. - E. Zinc-Coated (Galvanized) Metal, Aluminum, Copper and Copper Alloys Surfaces Specified Painted: - 1. Clean surfaces to remove grease, oil and other deterrents to paint adhesion in accordance with SSPC-SP 1 (Solvent Cleaning). - 2. Spot coat abraded and damaged areas of zinc-coating which expose base metal on hot-dip zinc-coated items with Organic Zinc Rich Coating. Prime or spot prime with MPI 134 (Waterborne Galvanized Primer) or MPI 135 (Non- Cementitious Galvanized Primer) depending on finish coat compatibility. - F. Masonry, Concrete, Cement Board, Cement Plaster and Stucco: - 1. Clean and remove dust, dirt, oil, grease efflorescence, form release agents, laitance, and other deterrents to paint adhesion. - 2. Use emulsion type cleaning agents to remove oil, grease, paint and similar products. Use of solvents, acid, or steam is not permitted. - 3. Remove loose mortar in masonry work. - 4. Replace mortar and fill open joints, holes, cracks and depressions with new mortar specified in Section 04 05 13, MASONRY MORTARING Section 04 05 16, MASONRY GROUTING. Do not fill weep holes. Finish to match adjacent surfaces. - 5. Neutralize Concrete floors to be painted by washing with a solution of 1.4 Kg (3 pounds) of zinc sulfate crystals to 3.8 L (1 gallon) of water, allow to dry three days and brush thoroughly free of crystals. - 6. Repair broken and spalled concrete edges with concrete patching compound to match adjacent surfaces as specified in CONCRETE Sections. Remove projections to level of adjacent surface by grinding or similar methods. - G. Gypsum Plaster and Gypsum Board: - Remove efflorescence, loose and chalking plaster or finishing materials. - 2. Remove dust, dirt, and other deterrents to paint adhesion. - 3. Fill holes, cracks, and other depressions with CID-A-A-1272A [Plaster, Gypsum (Spackling Compound) finished flush with adjacent surface, with texture to match texture of adjacent surface. Patch holes over 25 mm (1-inch) in diameter as specified in Section for plaster or gypsum board. ## 3.3 PAINT PREPARATION - A. Thoroughly
mix painting materials to ensure uniformity of color, complete dispersion of pigment and uniform composition. - B. Do not thin unless necessary for application and when finish paint is used for body and prime coats. Use materials and quantities for thinning as specified in manufacturer's printed instructions. - C. Remove paint skins, then strain paint through commercial paint strainer to remove lumps and other particles. - D. Mix two component and two part paint and those requiring additives in such a manner as to uniformly blend as specified in manufacturer's printed instructions unless specified otherwise. - E. For tinting required to produce exact shades specified, use color pigment recommended by the paint manufacturer. #### 3.4 APPLICATION - A. Start of surface preparation or painting will be construed as acceptance of the surface as satisfactory for the application of materials. - B. Unless otherwise specified, apply paint in three coats; prime, body, and finish. When two coats applied to prime coat are the same, first coat applied over primer is body coat and second coat is finish coat. - C. Apply each coat evenly and cover substrate completely. - D. Allow not less than 48 hours between application of succeeding coats, except as allowed by manufacturer's printed instructions, and approved by RE/COTR. - E. Finish surfaces to show solid even color, free from runs, lumps, brushmarks, laps, holidays, or other defects. - F. Apply by brush, roller or spray, except as otherwise specified. - G. Do not spray paint in existing occupied spaces unless approved by RE/COTR, except in spaces sealed from existing occupied spaces. - 1. Apply painting materials specifically required by manufacturer to be applied by spraying. - 2. In areas, where paint is applied by spray, mask or enclose with polyethylene, or similar air tight material with edges and seams continuously sealed including items specified in WORK NOT PAINTED, motors, controls, telephone, and electrical equipment, fronts of sterilizes and other recessed equipment and similar prefinished items. - I. Do not paint in closed position operable items such as access doors and panels, window sashes, overhead doors, and similar items except overhead roll-up doors and shutters. ## 3.5 PRIME PAINTING - A. After surface preparation, prime surfaces before application of body and finish coats, except as otherwise specified. - B. Spot prime and apply body coat to damaged and abraded painted surfaces before applying succeeding coats. - C. Additional field applied prime coats over shop or factory applied prime coats are not required except for exterior exposed steel. Apply an additional prime coat. - D. Prime rebates for stop and face glazing of wood, and for face glazing of steel. - E. Wood and Wood Particleboard: - 1. Use same kind of primer specified for exposed face surface. - a. Exterior wood: MPI 7 (Exterior Oil Wood Primer) for new construction and MPI 5(Exterior Alkyd Wood Primer) for repainting bare wood primer except where Interior Wood Stain, Semi-Transparent (WS) is scheduled. - b. Interior wood except for transparent finish: MPI 45 (Interior Primer Sealer) or MPI 46 (Interior Enamel Undercoat), thinned if recommended by manufacturer. - c. Transparent finishes as specified under Transparent Finishes on Wood. ## F. Metals: - 1. Steel and iron: MPI 95 (Fast Drying Metal Primer. Use MPI 101 (Cold Curing Epoxy Primer) where High Build Epoxy Coating finish is specified. - 2. Zinc-coated steel and iron: MPI 135 (Non-Cementitious Galvanized Primer). - 3. Aluminum scheduled to be painted: MPI 95 (Fast Drying Metal Primer). - 4. Terne Metal: MPI 95 (Fast Drying Metal Primer) - 5. Copper and copper alloys scheduled to be painted: MPI 95 (Fast Drying Metal Primer). - 6. Machinery not factory finished: MPI 9 (Exterior Alkyd Enamel (EO)). - 7. Asphalt coated metal: Aluminum Paint (AP). - G. Gypsum Board and Hardboard: - 1. Surfaces to have Interior Satin Latex MPI 43, Gloss Level G4 - 2. Primer: MPI 45 (Interior Primer Sealer) - H. Concrete Masonry Units except glazed or integrally colored and decorative units: 1. Prime exterior surface as specified for exterior finishes. ## 3.6 EXTERIOR FINISHES - A. Apply following finish coats where specified in Section 09 06 00, SCHEDULE FOR FINISHES. - B. Steel and Ferrous Metal, Including Tern: - 1. Two coats of MPI 8 (Exterior Alkyd, Flat (EO)) on exposed surfaces, except on surfaces over 94 degrees C (200 degrees F). - 2. One coat of MPI 22 (High Heat Resistant Coating (HR)) on surfaces over 94 degrees K (200 degrees F) and on surfaces of boiler stacks - C. Machinery without factory finish except for primer: One coat MPI 94 (Exterior Alkyd, Semi-Gloss (EO)), Gloss Level G5. - D. Concrete Masonry Units /: - 1. General(as per manufacturer): - a. Where specified in Section 09 06 00, SCHEDULE FOR FINISHES or shown. - b. Mix as specified in manufacturer's printed directions. - c. Do not mix more paint at one time than can be used within four hours after mixing. Discard paint that has started to set. - d. Dampen warm surfaces above 24 degrees C (75 degrees F) with fine mist of water before application of paint. Do not leave free water on surface. - e. Cure paint with a fine mist of water as specified in manufacturer's printed instructions. ## 3.7 INTERIOR FINISHES - A. Apply following finish coats over prime coats in spaces or on surfaces specified in Section 09 06 00, SCHEDULE FOR FINISHES. - B. Metal Work: - 1. Apply to exposed surfaces. - 2. Omit body and finish coats on surfaces concealed after installation except electrical conduit containing conductors over 600 volts. - 3. Ferrous Metal, Galvanized Metal, and Other Metals Scheduled: - a. Apply two coats of MPI 47 (Interior Alkyd, Semi-Gloss (AK))Gloss Level G5 unless specified otherwise. - b. Two coats of MPI 51 (Interior Alkyd, Eggshell (AK), Gloss Level G3. - c. One coat of MPI 46 (Interior Enamel Undercoat) plus one coat of MPI 47 (Interior Alkyd, Semi-Gloss (AK)), Gloss level G5 on exposed interior surfaces of alkyd-amine enamel prime finished windows. - d. Machinery: One coat MPI 9 (Exterior Alkyd Enamel (EO)). - e. Asphalt Coated Metal: One coat MPI 1 (Aluminum Paint (AP)). - f. Ferrous Metal over 94 degrees K (200 degrees F): One coat MPI 22 (High Heat Resistant Coating (HR). # C. Gypsum Board: - 1. One coat of MPI 45 (Interior Primer Sealer) - 2. Two coats of MPI43 (Interior Satin Latex)Gloss Level G4. - D. Masonry and Concrete Walls: - 1. Over MPI 4 (Interior/Exterior Latex Block Filler) on CMU surfaces. - 2. Two coats of MPI 53 (Interior Latex, Flat, MPI Gloss Level 1 (LE)) #### E. Wood: - 1. Sanding: - a. Use 220-grit sandpaper. - b. Sand sealers and varnish between coats. - c. Sand enough to scarify surface to assure good adhesion of subsequent coats, to level roughly applied sealer and varnish, and to knock off "whiskers" of any raised grain as well as dust particles. ## 2. Sealers: - a. Apply sealers specified except sealer may be omitted where pigmented, penetrating, or wiping stains containing resins are used. - b. Allow manufacturer's recommended drying time before sanding, but not less than 24 hours or 36 hours in damp or muggy weather. - c. Sand as specified. - 3. Transparent Finishes on Wood Except Floors. - a. Natural Finish: - 1) One coat of sealer as written in 2.1 E. - 2) Two coats of MPI 71 (Polyurethane, Moisture Cured, Clear Flat (PV)//MPI 31 (Polyurethane, Moisture Cured, Clear Gloss (PV). - b. Stain Finish: - 1) One coat of MPI 90 (Interior Wood Stain, Semi-Transparent (WS)). - 2) Use wood stain of type and color required to achieve finish specified. Do not use varnish type stains. - 3) One coat of sealer as written in 2.1 E. - 4) Two coats of MPI 71 (Polyurethane, Moisture Cured, Clear Flat (PV) - c. Varnish Finish: - 1) One coat of sealer as written in 2.1 E. - 2) Two coats of MPI 71 (Polyurethane, Moisture Cured, Clear Flat (PV). - d. MPI 66 (Interior Alkyd Fire Retardant, Clear Top-Coat(ULC Approved) (FC)) Intumescent Type, Fire Retardant Coating (FC) where scheduled: Two coats. - F. Cement Board: One coat of MPI 138 (Interior High Performance Latex, MPI Gloss Level 2 (LF)). - G. Concrete Floors: One coat of MPI 68 (Interior/ Exterior Latex Porch & Floor Paint, Gloss (FE)). ## 3.8 PAINT COLOR - A. Color and gloss of finish coats is specified in Section 09 06 00, SCHEDULE FOR FINISHES. - B. For additional requirements regarding color see Articles, REFINISHING EXISTING PAINTED SURFACE and MECHANICAL AND ELECTRICAL FIELD PAINTING SCHEDULE. - C. Coat Colors: - 1. Color of priming coat: Lighter than body coat. - 2. Color of body coat: Lighter than finish coat. - 3. Color prime and body coats to not show through the finish coat and to mask surface imperfections or contrasts. - D. Painting, Caulking, Closures, and Fillers Adjacent to Casework: - 1. Paint to match color of casework where casework has a paint finish. - 2. Paint to match color of wall where casework is stainless steel, plastic laminate, or varnished wood. ## 3.9 MECHANICAL AND ELECTRICAL WORK FIELD PAINTING SCHEDULE: - A. Field painting of mechanical and electrical consists of cleaning, touching-up abraded shop prime coats, and applying prime, body and finish coats to materials and equipment if not factory finished in space scheduled to be finished. - B. In spaces not scheduled to be finish painted in Section 09 06 00, SCHEDULE FOR FINISHES paint as specified below. - C. Paint various systems specified in Division 02 EXISTING CONDITIONS, Division 21 - FIRE SUPPRESSION, Division 22 - PLUMBING, Division 23 -HEATING, VENTILATION AND AIR-CONDITIONING, Division 26 - ELECTRICAL, Division 27 - COMMUNICATIONS, and Division 28 - ELECTRONIC SAFETY AND SECURITY. - D. Paint after tests have been completed. - E. Omit prime coat from factory prime-coated items. - F. Finish painting of mechanical and electrical equipment is not required when located in interstitial spaces, above suspended ceilings, in -
concealed areas such as pipe and electric closets, pipe basements, pipe tunnels, trenches, attics, roof spaces, shafts and furred spaces except on electrical conduit containing feeders 600 volts or more. - G. Omit field painting of items specified in "BUILDING AND STRUCTURAL WORK FIELD PAINTING"; "Building and Structural Work not Painted". #### H. Color: - 1. Paint items having no color specified in Section 09 06 00, SCHEDULE FOR FINISHES to match surrounding surfaces. - 2. Paint colors as specified in Section 09 06 00, SCHEDULE FOR FINISHES except for following: - a. White: Exterior unfinished surfaces of enameled plumbing fixtures. Insulation coverings on breeching and uptake inside boiler house, drums and drum-heads, oil heaters, condensate tanks and condensate piping. - b. Gray: Heating, ventilating, air conditioning and refrigeration equipment (except as required to match surrounding surfaces), and water and sewage treatment equipment and sewage ejection equipment. - c. Aluminum Color: Ferrous metal on outside of boilers and in connection with boiler settings including supporting doors and door frames and fuel oil burning equipment, and steam generation system (bare piping, fittings, hangers, supports, valves, traps and miscellaneous iron work in contact with pipe). - d. Federal Safety Red: Exposed fire protection piping hydrants, post indicators, electrical conducts containing fire alarm control wiring, and fire alarm equipment. - e. Federal Safety Orange: Entire lengths of electrical conduits containing feeders 600 volts or more. - f. Color to match brickwork sheet metal covering on breeching outside of exterior wall of boiler house. - I. Apply paint systems on properly prepared and primed surface as follows: - 1. Exterior Locations: - a. Apply two (2) coats of MPI 8 (Exterior Alkyd, Flat) to the following ferrous metal items: - Vent and exhaust pipes with temperatures under 94 degrees C(201 degrees F), roof drains, fire hydrants, post indicators, yard hydrants, exposed piping and similar items. - b. Apply two (2) coats of MPI 10 (Exterior Latex, Flat) to galvanized and zinc-copper alloy metal. c. Apply one (1) coat of MPI 22 (High Heat Resistant Coating), 650 degrees C (1200 degrees F) to incinerator stacks, boiler stacks, and engine generator exhaust. ## 2. Interior Locations: - a. Apply two (2) coats of MPI 47 (Interior Alkyd, Semi-Gloss) to following items: - 1) Metal under 94 degrees C (201 degrees F) of items such as bare piping, fittings, hangers and supports. - Equipment and systems such as hinged covers and frames for control cabinets and boxes, cast-iron radiators, electric conduits and panel boards. - 3) Heating, ventilating, air conditioning, plumbing equipment, and machinery having shop prime coat and not factory finished. - b. Paint electrical conduits containing cables rated 600 volts or more using two (2) coats of MPI 9 (Exterior Alkyd Enamel) in the Federal Safety Orange color in exposed and concealed spaces full length of conduit. # 3. Other exposed locations: a. Cloth jackets of insulation of ducts and pipes in connection with plumbing, air conditioning, ventilating refrigeration and heating systems: One (1) coat of MPI 50 (Interior Latex Primer Sealer) and one (1) coat of MPI 11 (Exterior Latex Semi-Gloss. # 3.14 IDENTITY PAINTING SCHEDULE: - A. Identify designated service in new buildings or projects with extensive remodeling in accordance with ASME A13.1, unless specified otherwise, on exposed piping, piping above removable ceilings, piping in accessible pipe spaces, interstitial spaces, and piping behind access panels. For existing spaces where work is minor match existing. - 1. Legend may be identified using snap-on coil plastic markers or by paint stencil applications. - 2. Apply legends adjacent to changes in direction, on branches, where pipes pass through walls or floors, adjacent to operating accessories such as valves, regulators, strainers and cleanouts a minimum of 12.2 M (40 feet) apart on straight runs of piping. Identification next to plumbing fixtures is not required. - 3. Locate Legends clearly visible from operating position. - 4. Use arrow to indicate direction of flow using black stencil paint. - 5. Identify pipe contents with sufficient additional details such as temperature, pressure, and contents to identify possible hazard. Insert working pressure shown on construction documents where asterisk appears for High, Medium, and Low Pressure designations as follows: - a. High Pressure 414 kPa (60 psig) and above. - b. Medium Pressure 104 to 413 kPa (15 to 59 psig). - c. Low Pressure 103 kPa (14 psig) and below. - d. Add Fuel oil grade numbers. - 6. Legend name in full or in abbreviated form as follows: | | COLOR OF | COLOR OF | COLOR OF | LEGEND | |-----------------------------|----------------|------------|-----------------|---------------| | PIPING | EXPOSED PIPING | BACKGROUND | LETTERS | ABBREVIATIONS | | | | | | | | Chilled Glycol-Wate | Green | White | Ch. Gly-Wtr Sup | | | Chilled Glycol-Wate | Green | White | Ch. Gly-Wtr Ret | | | Drain Line | Green | White | Drain | | | Vent Line | Green | White | Vent | | | Cold Water (Domestic) White | | Green | White | C.W. Dom | | Hot Water (Domestic) | | | | | | Supply | White | Yellow | Black | H.W. Dom | | Return | White | Yellow | Black | H.W. Dom Ret | | Tempered Water | White | Yellow | Black | Temp. Wtr | | Storm Drainage | | Green | White | St Drain | # 3.09 PROTECTION CLEAN UP, AND TOUCH-UP - A. Protect work from paint droppings and spattering by use of masking, drop cloths, removal of items or by other approved methods. - B. Upon completion, clean paint from hardware, glass and other surfaces and items not required to be painted of paint drops or smears. - C. Before final inspection, touch-up or refinished in a manner to produce solid even color and finish texture, free from defects in work which was damaged or discolored. - - - E N D - - - ## APPENDIX Coordinate the following abbreviations used in Section 09 91 00, PAINTING, with other Sections, especially Section 09 06 00, SCHEDULE FOR FINISHES and other COATING SECTIONS listed. Use the same abbreviation and terms consistently. ``` Paint or coating Abbreviation Acrylic Emulsion AE (MPI 10 - flat/MPI 11 - semigloss/MPI 119 - gloss) Alkyd Flat Ak (MPI 49) Alkyd Gloss Enamel G (MPI 48) Alkyd Semigloss Enamel SG (MPI 47) Aluminum Paint AP) Cementitious Paint CEP (TT-P-1411) EL(MPI 10 / 11 / 119) Exterior Latex Exterior Oil EO (MPI 9 - gloss/MPI 8 - flat/MPI 94 - semigloss) Epoxy Coating EC (MPI 77 - walls, floors/MPI 108 - CMU, concrete) Fire Retardant Paint FR Fire Retardant Coating (Clear) FC (intumescent type) FE (MPI 27 - gloss/MPI 59 - eggshell) Floor Enamel Heat Resistant Paint HR LE (MPI 53, flat/MPI 52, eggshell/MPI 54, semigloss/MPI Latex Emulsion 114, gloss Level 6 Latex Flat LF (MPI 138) Latex Gloss LG (MPI 114) Latex Semigloss SG (MPI 141) Latex Low Luster LL (MPI 139) Plastic Floor Coating PL Polyurethane Varnish PV (Rubber Paint RF (CID-A-A-3120 - Paint for Swimming Pools (RF)). Water Paint, Cement WPC (CID-A-A-1555 - Water Paint, Powder). Wood Stain WS - - - E N D - - - ``` # SECTION 23 05 11 COMMON WORK RESULTS FOR HVAC ## PART 1 - GENERAL #### 1.1 DESCRIPTION - A. The requirements of this Section apply to all sections of Division 23. - B. Definitions: - 1. Exposed: Piping, ductwork, and equipment exposed to view in finished rooms. - Option or optional: Contractor's choice of an alternate material or method. - 3. RE: Resident Engineer - 4. COTR: Contracting Officer's Technical Representative. ## 1.2 RELATED WORK - A. Section 00 72 00, GENERAL CONDITIONS - B. Section 01 00 00, GENERAL REQUIREMENTS - C. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES - D. Section 03 30 00, CAST-IN-PLACE CONCRETE. - E. Section 05 31 00, STEEL DECKING, - F. Section 05 50 00, METAL FABRICATIONS - G. Section 07 84 00, FIRESTOPPING - H. Section 07 92 00, JOINT SEALANTS - I. Section 09 91 00, PAINTING - J. Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC - K. Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT - L. Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC - M. Section 23 07 11, HVAC INSULATION. - N. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS - O. Section 26 05 19, LOW VOLTAGE ELECTRICAL POWER CONDUITS and CABLES. - P. Section 26 29 11, MOTOR CONTROLLERS. ## 1.3 QUALITY ASSURANCE A. Mechanical, electrical and associated systems shall be safe, reliable, efficient, durable, easily and safely operable and maintainable, easily and safely accessible, and in compliance with applicable codes as specified. The systems shall be comprised of high quality institutional-class and industrial-class products of manufacturers that are experienced specialists in the required product lines. All 23 05 11 - 1 - construction firms and personnel shall be experienced and qualified specialists in industrial and institutional HVAC - B. Flow Rate Tolerance for HVAC Equipment: Section 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC. - C. Equipment Vibration Tolerance: - 1. Refer to Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT. Equipment shall be factory-balanced to this tolerance and re-balanced on site, as necessary. #### D. Products Criteria: - 1. Standard Products: Material and equipment shall be the standard products of a manufacturer regularly engaged in the manufacture of the products for at least 3 years (or longer as specified elsewhere). The design, model and size of each item shall have been in satisfactory and efficient operation on at least three installations for approximately three years. However, digital electronics devices, software and systems such as controls, instruments, computer work station, shall be the current generation of technology and basic design that has a proven satisfactory service record of at least three years. See other specification sections for any
exceptions and/or additional requirements. - 2. All items furnished shall be free from defects that would adversely affect the performance, maintainability and appearance of individual components and overall assembly. - 3. Conform to codes and standards as required by the specifications. Conform to local codes, if required by local authorities such as the natural gas supplier, if the local codes are more stringent then those specified. Refer any conflicts to the Resident Engineer. - 4. Multiple Units: When two or more units of materials or equipment of the same type or class are required, these units shall be products of one manufacturer. - 5. Assembled Units: Manufacturers of equipment assemblies, which use components made by others, assume complete responsibility for the final assembled product. - 6. Nameplates: Nameplate bearing manufacturer's name or identifiable trademark shall be securely affixed in a conspicuous place on equipment, or name or trademark cast integrally with equipment, stamped or otherwise permanently marked on each item of equipment. - 7. Asbestos products or equipment or materials containing asbestos shall not be used. - E. Equipment Service Organizations: - 1. HVAC: Products and systems shall be supported by service organizations that maintain a complete inventory of repair parts and are located within 50 miles to the site. - F. HVAC Mechanical Systems Welding: Before any welding is performed, contractor shall submit a certificate certifying that welders comply with the following requirements: - Qualify welding processes and operators for piping according to ASME "Boiler and Pressure Vessel Code", Section IX, "Welding and Brazing Qualifications". - 2. Comply with provisions of ASME B31 series "Code for Pressure Piping". - 3. Certify that each welder has passed American Welding Society (AWS) qualification tests for the welding processes involved, and that certification is current. - G. Execution (Installation, Construction) Quality: - 1. Apply and install all items in accordance with manufacturer's written instructions. Refer conflicts between the manufacturer's instructions and the contract drawings and specifications to the Resident Engineer for resolution. Provide written hard copies or computer files of manufacturer's installation instructions to the Resident Engineer at least two weeks prior to commencing installation of any item. Installation of the item will not be allowed to proceed until the recommendations are received. Failure to furnish these recommendations is a cause for rejection of the material. - 2. Provide complete layout drawings required by Paragraph, SUBMITTALS. Do not commence construction work on any system until the layout drawings have been approved. - H. Upon request by Government, provide lists of previous installations for selected items of equipment. Include contact persons who will serve as references, with telephone numbers and e-mail addresses. 23 05 11 - 3 ## 1.4 SUBMITTALS - A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, and with requirements in the individual specification sections. - B. Contractor shall make all necessary field measurements and investigations to assure that the equipment and assemblies will meet contract requirements. - C. If equipment is submitted which differs in arrangement from that shown, provide drawings that show the rearrangement of all associated systems. Approval will be given only if all features of the equipment and associated systems, including accessibility, are equivalent to that required by the contract. - D. Prior to submitting shop drawings for approval, contractor shall certify in writing that manufacturers of all major items of equipment have each reviewed drawings and specifications, and have jointly coordinated and properly integrated their equipment and controls to provide a complete and efficient installation. - E. Submittals and shop drawings for interdependent items, containing applicable descriptive information, shall be furnished together and complete in a group. Coordinate and properly integrate materials and equipment in each group to provide a completely compatible and efficient. ## F. Layout Drawings: - Submit complete consolidated and coordinated layout drawings for all new systems, and for existing systems that are in the same areas. Refer to Section 00 72 00, GENERAL CONDITIONS, Article, SUBCONTRACTS AND WORK COORDINATION. - 2. The drawings shall include plan views, elevations and sections of all systems and shall be on a scale of not less than 1:32 (3/8-inch equal to one foot). Clearly identify and dimension the proposed locations of the principal items of equipment. The drawings shall clearly show locations and adequate clearance for all equipment, piping, valves, control panels and other items. Show the access means for all items requiring access for operations and maintenance. Provide detailed layout drawings of all piping and duct systems. - 3. Do not install equipment foundations, equipment or piping until layout drawings have been approved. - 4. In addition, for HVAC systems, provide details of the following: - a. Mechanical equipment rooms. - b. Hangers, inserts, supports, and bracing. - c. Pipe sleeves. - d. Duct or equipment penetrations of floors, walls, ceilings, or roofs. - G. Manufacturer's Literature and Data: Submit under the pertinent section rather than under this section. - 1. Submit electric motor data and variable speed drive data with the driven equipment. - 2. Equipment and materials identification. - 3. Fire-stopping materials. - 4. Hangers, inserts, supports and bracing. Provide load calculations for variable spring and constant support hangers. - 5. Wall, floor, and ceiling plates. - H. HVAC Maintenance Data and Operating Instructions: - Maintenance and operating manuals in accordance with Section 01 00 00, GENERAL REQUIREMENTS, Article, INSTRUCTIONS, for systems and equipment. - 2. Provide a listing of recommended replacement parts for keeping in stock supply, including sources of supply, for equipment. - I. Provide copies of approved HVAC equipment submittals to the Testing, Adjusting and Balancing Subcontractor. ## 1.5 APPLICABLE PUBLICATIONS - A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. - B. Air Conditioning, Heating and Refrigeration Institute (AHRI): | 370-01 | .Sound Rating of Large Outdoor Refrigerating and | |------------------|--| | | Air-Conditioning Equipment | | 495-1999 (R2002) | .Refrigerant Liquid Receivers— | | 550/590-03 | .Standard for Water Chilling Packages Using the | | | Vapor Compression Cycle | | 575-94 | .Methods for Measuring Machinery Sound within | | | Equipment Space | | C. | American National Standard Institute (ANSI): | |-----|---| | | B31.1-2007Power Piping | | D. | Air Movement and Control Association (AMCA): | | | 410-96Recommended Safety Practices for Air Moving | | | Devices | | Ε. | American Society of Mechanical Engineers (ASME): | | | Boiler and Pressure Vessel Code (BPVC): | | | Section IX-2007Welding and Brazing Qualifications | | | Code for Pressure Piping: | | | B31.1-2007Power Piping | | F. | American Society for Testing and Materials (ASTM): | | | A36/A36M-08Standard Specification for Carbon Structural | | | Steel | | | A575-96(2007)Standard Specification for Steel Bars, Carbon, | | | Merchant Quality, M-Grades | | | E84-10Standard Test Method for Surface Burning | | | Characteristics of Building Materials | | | E119-09cStandard Test Methods for Fire Tests of | | | Building Construction and Materials | | G. | Manufacturers Standardization Society (MSS) of the Valve and Fittings | | | Industry, Inc: | | | SP-58-2009Pipe Hangers and Supports-Materials, Design and | | | Manufacture, Selection, Application, and | | | Installation | | | SP 69-2003Pipe Hangers and Supports-Selection and | | | Application | | | SP 127-2001Bracing for Piping Systems, Seismic - Wind - | | | Dynamic, Design, Selection, Application | | Н. | National Electrical Manufacturers Association (NEMA): | | | MG-1-2009Motors and Generators | | I. | National Fire Protection Association (NFPA): | | | 70-08National Electrical Code | | | 101-09Life Safety Code | | 6 D | ELIVERY, STORAGE AND HANDLING | # 1.6 DELIVERY, STORAGE AND HANDLING A. Protection of Equipment: - 1. Equipment and material placed on the job site shall remain in the custody of the Contractor until phased acceptance, whether or not the Government has reimbursed the Contractor for the equipment and material. The Contractor is solely responsible for the protection of such equipment and material against any damage. - 2. Place damaged equipment in first class, new operating condition; or, replace same as determined and directed by the Resident Engineer. Such repair or replacement shall be at no additional cost to the Government. - 3. Protect interiors of new equipment and piping systems against entry of foreign matter. Clean both inside and outside before painting or placing equipment in operation. - 4. Existing equipment and piping being worked on by the Contractor shall be under the custody and responsibility of the Contractor and shall be protected as required for new work. - B. Cleanliness of Piping and Equipment Systems: - Exercise care in storage and handling of equipment and piping material to be incorporated in the work. Remove debris arising from cutting, threading and welding of piping. - 2. Piping systems shall be flushed, blown or pigged as necessary to deliver clean systems. - 3. Clean interior of all tanks prior to delivery for beneficial use by the Government. - 4. Contractor shall be fully responsible for all costs, damage, and delay arising from failure to provide clean systems. ## 1.7 JOB CONDITIONS - WORK IN
EXISTING BUILDING - A. Building Operation: Government employees will be continuously operating and managing all facilities, including temporary facilities that serve the medical center. - B. Maintenance of Service: Schedule all work to permit continuous service as required by the medical center. - C. Building Working Environment: Maintain the architectural and structural integrity of the building and the working environment at all times. Maintain the interior of building at 18 degrees C (65 degrees F) minimum. Limit the opening of doors, windows or other access openings to brief periods as necessary for rigging purposes. No storm water or ground water leakage permitted. Provide daily clean-up of construction - and demolition debris on all floor surfaces and on all equipment being operated by VA. - D. Acceptance of Work for Government Operation: As new facilities are made available for operation and these facilities are of beneficial use to the Government, inspections will be made and tests will be performed. Based on the inspections, a list of contract deficiencies will be issued to the Contractor. After correction of deficiencies as necessary for beneficial use, the Contracting Officer will process necessary acceptance and the equipment will then be under the control and operation of Government personnel. #### PART 2 - PRODUCTS ## 2.1 FACTORY-ASSEMBLED PRODUCTS - A. Provide maximum standardization of components to reduce spare part requirements. - B. Manufacturers of equipment assemblies that include components made by others shall assume complete responsibility for final assembled unit. - 1. All components of an assembled unit need not be products of same manufacturer. - 2. Constituent parts that are alike shall be products of a single manufacturer. - 3. Components shall be compatible with each other and with the total assembly for intended service. - 4. Contractor shall guarantee performance of assemblies of components, and shall repair or replace elements of the assemblies as required to deliver specified performance of the complete assembly. - C. Components of equipment shall bear manufacturer's name and trademark, model number, serial number and performance data on a name plate securely affixed in a conspicuous place, or cast integral with, stamped or otherwise permanently marked upon the components of the equipment. - D. Major items of equipment, which serve the same function, must be the same make and model. Exceptions will be permitted if performance requirements cannot be met. ## 2.2 COMPATIBILITY OF RELATED EQUIPMENT Equipment and materials installed shall be compatible in all respects with other items being furnished and with existing items so that the result will be a complete and fully operational plant that conforms to contract requirements. ## 2.3 DRIVE GUARDS - A. For machinery and equipment, provide guards as shown in AMCA 410 for belts, chains, couplings, pulleys, sheaves, shafts, gears and other moving parts regardless of height above the floor to prevent damage to equipment and injury to personnel. Drive guards may be excluded where motors and drives are inside factory fabricated air handling unit casings. - B. Pump shafts and couplings shall be fully guarded by a sheet steel guard, covering coupling and shaft but not bearings. Material shall be minimum 16-gage sheet steel; ends shall be braked and drilled and attached to pump base with minimum of four 6 mm (1/4-inch) bolts. Reinforce guard as necessary to prevent side play forcing guard onto couplings. - C. Materials: Sheet steel, cast iron, expanded metal or wire mesh rigidly secured so as to be removable without disassembling pipe, duct, or electrical connections to equipment. - D. Access for Speed Measurement: 25 mm (One inch) diameter hole at each shaft center. ## 2.4 LIFTING ATTACHMENTS Provide equipment with suitable lifting attachments to enable equipment to be lifted in its normal position. Lifting attachments shall withstand any handling conditions that might be encountered, without bending or distortion of shape, such as rapid lowering and braking of load. # 2.5 ELECTRIC MOTORS A. All material and equipment furnished and installation methods shall conform to the requirements of Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC EQUIPMENT; Section 26 29 11, MOTOR STARTERS; and, Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES. Provide all electrical wiring, conduit, and devices necessary for the proper connection, protection and operation of the systems. Provide special energy efficient premium efficiency type motors as scheduled. ## 2.6 VARIABLE SPEED MOTOR CONTROLLERS - A. Refer to Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS and Section 26 29 11, MOTOR STARTERS for specifications. - B. The combination of controller and motor shall be provided by the manufacturer of the driven equipment, such as pumps and fans, and shall - be rated for 100 percent output performance. Multiple units of the same class of equipment, i.e. air handlers, fans, pumps, shall be product of a single manufacturer. - C. Motors shall be premium efficiency type and be approved by the motor controller manufacturer. The controller-motor combination shall be guaranteed to provide full motor nameplate horsepower in variable frequency operation. Both driving and driven motor/fan sheaves shall be fixed pitch. - D. Controller shall not add any current or voltage transients to the input AC power distribution system, DDC controls, sensitive medical equipment, etc., nor shall be affected from other devices on the AC power system. - E. Controller shall be provided with the following operating features and accessories: - 1. Suitable for variable torque load. - 2. Provide thermal magnetic circuit breaker or fused switch with external operator and incoming line fuses. Unit shall be rated for minimum 25,000 AIC. Provide AC input line reactors (3% impedance) filters on incoming power line. Provide output line reactors on line between drive and motor for motors over 50 HP or where the distance between the breaker and motor exceeds 50 feet. ## 2.7 EQUIPMENT AND MATERIALS IDENTIFICATION - A. Use symbols, nomenclature and equipment numbers specified, shown on the drawings and shown in the maintenance manuals. Identification for piping is specified in Section 09 91 00, PAINTING. - B. Interior (Indoor) Equipment: Engraved nameplates, with letters not less than 48 mm (3/16-inch) high of brass with black-filled letters, or rigid black plastic with white letters specified in Section 09 91 00, PAINTING permanently fastened to the equipment. Identify unit components such as coils, filters, fans, etc. - C. Exterior (Outdoor) Equipment: Brass nameplates, with engraved black filled letters, not less than 48 mm (3/16-inch) high riveted or bolted to the equipment. - D. Control Items: Label all temperature and humidity sensors, controllers and control dampers. Identify and label each item as they appear on the control diagrams. ## E. Valve Tags and Lists: - 1. HVAC: Provide for all valves. - 2. Valve tags: Engraved black filled numbers and letters not less than 13 mm (1/2-inch) high for number designation, and not less than 6.4 mm(1/4-inch) for service designation on 19 gage 38 mm (1-1/2 inches) round brass disc, attached with brass "S" hook or brass chain. - 3. Valve lists: Typed or printed plastic coated card(s), sized 216 mm(8-1/2 inches) by 280 mm (11 inches) showing tag number, valve function and area of control, for each service or system. Punch sheets for a 3-ring notebook. - 4. Provide detailed plan for each floor of the building indicating the location and valve number for each valve. Identify location of each valve with a color coded thumb tack in ceiling. ## 2.8 FIRESTOPPING Section 07 84 00, FIRESTOPPING specifies an effective barrier against the spread of fire, smoke and gases where penetrations occur for piping and ductwork. Refer to Section 23 07 11, HVAC, PLUMBING, AND BOILER PLANT INSULATION, for firestop pipe and duct insulation. ## 2.9 GALVANIZED REPAIR COMPOUND Mil. Spec. DOD-P-21035B, paint form. ## 2.10 HVAC PIPE AND EQUIPMENT SUPPORTS AND RESTRAINTS - A. Vibration Isolators: Refer to Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT. - B. Pipe Supports: Comply with MSS SP-58. Type Numbers specified refer to this standard. For selection and application comply with MSS SP-69. Refer to Section 05 50 00, METAL FABRICATIONS, for miscellaneous metal support materials and prime coat painting requirements. - C. Attachment to Concrete Building Construction: - 1. Concrete insert: MSS SP-58, Type 18. - 2. Self-drilling expansion shields and machine bolt expansion anchors: Permitted in concrete not less than 102 mm (four inches) thick when approved by the Resident Engineer for each job condition. - 3. Power-driven fasteners: Permitted in existing concrete or masonry not less than 102 mm (four inches) thick when approved by the Resident Engineer for each job condition. - D. Attachment to Steel Building Construction: - 1. Welded attachment: MSS SP-58, Type 22. - 2. Beam clamps: MSS SP-58, Types 20, 21, 28 or 29. Type 23 C-clamp may be used for individual copper tubing up to 23mm (7/8-inch) outside diameter. - E. Attachment to existing structure: Support from existing floor/roof frame. - F. Attachment to Wood Construction: Wood screws or lag bolts. - G. Hanger Rods: Hot-rolled steel, ASTM A36 or A575 for allowable load listed in MSS SP-58. For piping, provide adjustment means for controlling level or slope. Types 13 or 15 turn-buckles shall provide 38 mm (1-1/2 inches) minimum of adjustment and incorporate locknuts. All-thread rods are acceptable. - H. Hangers Supporting Multiple Pipes (Trapeze Hangers): Galvanized, cold formed, lipped steel channel horizontal member, not less than 41 mm by 41 mm (1-5/8 inches by 1-5/8 inches), 2.7 mm (No. 12 gage), designed to accept special spring held, hardened steel nuts. Not
permitted for steam supply and condensate piping. - 1. Allowable hanger load: Manufacturers rating less 91kg (200 pounds). - 2. Guide individual pipes on the horizontal member of every other trapeze hanger with 6 mm (1/4-inch) U-bolt fabricated from steel rod. Provide Type 40 insulation shield, secured by two 13mm (1/2-inch) galvanized steel bands, or preinsulated calcium silicate shield for insulated piping at each hanger. - I. Supports for Piping Systems: - 1. Select hangers sized to encircle insulation on insulated piping. Refer to Section 23 07 11, HVAC, INSULATION for insulation thickness. To protect insulation, provide Type 39 saddles for roller type supports or preinsulated calcium silicate shields. Provide Type 40 insulation shield or preinsulated calcium silicate shield at all other types of supports and hangers including those for preinsulated piping. - 2. Piping Systems except High and Medium Pressure Steam (MSS SP-58): - a. Standard clevis hanger: Type 1; provide locknut. - b. Riser clamps: Type 8. - c. Wall brackets: Types 31, 32 or 33. - d. Roller supports: Type 41, 43, 44 and 46. - e. Saddle support: Type 36, 37 or 38. - f. Turnbuckle: Types 13 or 15. Preinsulate. - g. U-bolt clamp: Type 24. - h. Copper Tube: - Hangers, clamps and other support material in contact with tubing shall be painted with copper colored epoxy paint, plastic coated or taped with non adhesive isolation tape to prevent electrolysis. - 2) For vertical runs use epoxy painted or plastic coated riser clamps. - 3) For supporting tube to strut: Provide epoxy painted pipe straps for copper tube or plastic inserted vibration isolation clamps. - 4) Insulated Lines: Provide pre-insulated calcium silicate shields sized for copper tube. - i. Supports for plastic or glass piping: As recommended by the pipe manufacturer with black rubber tape extending one inch beyond steel support or clamp. - J. Pre-insulated Calcium Silicate Shields: - 1. Provide 360 degree water resistant high density 965 kPa (140 psi) compressive strength calcium silicate shields encased in galvanized metal. - 2. Pre-insulated calcium silicate shields to be installed at the point of support during erection. - 3. Shield thickness shall match the pipe insulation. - 4. The type of shield is selected by the temperature of the pipe, the load it must carry, and the type of support it will be used with. - a. Shields for supporting chilled or cold water shall have insulation that extends a minimum of 1 inch past the sheet metal. Provide for an adequate vapor barrier in chilled lines. - b. The pre-insulated calcium silicate shield shall support the maximum allowable water filled span as indicated in MSS-SP 69. To support the load, the shields may have one or more of the following features: structural inserts 4138 kPa (600 psi) compressive strength, an extra bottom metal shield, or formed structural steel (ASTM A36) wear plates welded to the bottom sheet metal jacket. - 5. Shields may be used on steel clevis hanger type supports, roller supports or flat surfaces. ## 2.11 PIPE PENETRATIONS - A. Install sleeves during construction for other than blocked out floor openings for risers in mechanical bays. - B. To prevent accidental liquid spills from passing to a lower level, provide the following: - 1. For sleeves: Extend sleeve 25 mm (one inch) above finished floor and provide sealant for watertight joint. - 2. For blocked out floor openings: Provide 40 mm (1-1/2 inch) angle set in silicone adhesive around opening. - 3. For drilled penetrations: Provide 40 mm (1-1/2 inch) angle ring or square set in silicone adhesive around penetration. - C. Penetrations are not allowed through beams or ribs, but may be installed in concrete beam flanges. Any deviation from these requirements must receive prior approval of Resident Engineer. - D. Sheet Metal, Plastic, or Moisture-resistant Fiber Sleeves: Provide for pipe passing through floors, interior walls, and partitions, unless brass or steel pipe sleeves are specifically called for below. - E. Cast Iron or Zinc Coated Pipe Sleeves: Provide for pipe passing through exterior walls below grade. Make space between sleeve and pipe watertight with a modular or link rubber seal. Seal shall be applied at both ends of sleeve. - F. Galvanized Steel or an alternate Black Iron Pipe with asphalt coating Sleeves: Provide for pipe passing through concrete beam flanges, except where brass pipe sleeves are called for. Provide sleeve for pipe passing through floor of mechanical rooms, laundry work rooms, and animal rooms above basement. Except in mechanical rooms, connect sleeve with floor plate. - G. Brass Pipe Sleeves: Provide for pipe passing through quarry tile, terrazzo or ceramic tile floors. Connect sleeve with floor plate. - H. Sleeves are not required for wall hydrants for fire department connections or in drywall construction. - I. Sleeve Clearance: Sleeve through floors, walls, partitions, and beam flanges shall be one inch greater in diameter than external diameter of pipe. Sleeve for pipe with insulation shall be large enough to accommodate the insulation. Interior openings shall be caulked tight with fire stopping material and sealant to prevent the spread of fire, smoke, and gases. 23 05 11 - 14 J. Sealant and Adhesives: Shall be as specified in Section 07 92 00, JOINT SEALANTS. ## 2.12 SPECIAL TOOLS AND LUBRICANTS - A. Furnish, and turn over to the Resident Engineer, tools not readily available commercially, that are required for disassembly or adjustment of equipment and machinery furnished. - B. Grease Guns with Attachments for Applicable Fittings: One for each type of grease required for each motor or other equipment. - C. Refrigerant Tools: Provide system charging/Evacuation equipment, gauges, fittings, and tools required for maintenance of furnished equipment. - D. Tool Containers: Hardwood or metal, permanently identified for in tended service and mounted, or located, where directed by the Resident Engineer. - E. Lubricants: A minimum of 0.95 L (one quart) of oil, and 0.45 kg (one pound) of grease, of equipment manufacturer's recommended grade and type, in unopened containers and properly identified as to use for each different application. ## 2.13 WALL, FLOOR AND CEILING PLATES - A. Material and Type: Chrome plated brass or chrome plated steel, one piece or split type with concealed hinge, with set screw for fastening to pipe, or sleeve. Use plates that fit tight around pipes, cover openings around pipes and cover the entire pipe sleeve projection. - B. Thickness: Not less than 2.4 mm (3/32-inch) for floor plates. For wall and ceiling plates, not less than 0.64 mm (0.025-inch) for up to 80 mm (3-inch pipe), 0.89 mm (0.035-inch) for larger pipe. - C. Locations: Use where pipe penetrates floors, walls and ceilings in exposed locations, in finished areas only. Provide a watertight joint in spaces where brass or steel pipe sleeves are specified. #### 2.14 ASBESTOS Materials containing asbestos are not permitted. ## PART 3 - EXECUTION ## 3.1 ARRANGEMENT AND INSTALLATION OF EQUIPMENT AND PIPING A. Coordinate location of piping, sleeves, inserts, hangers, ductwork and equipment. Locate piping, sleeves, inserts, hangers, ductwork and equipment clear of windows, doors, openings, light outlets, and other services and utilities. Prepare equipment layout drawings to coordinate - proper location and personnel access of all facilities. Submit the drawings for review as required by Part 1. Follow manufacturer's published recommendations for installation methods not otherwise specified. - B. Operating Personnel Access and Observation Provisions: Select and arrange all equipment and systems to provide clear view and easy access, without use of portable ladders, for maintenance and operation of all devices including, but not limited to: all equipment items, valves, filters, strainers, transmitters, sensors, control devices. All gages and indicators shall be clearly visible by personnel standing on the floor or on permanent platforms. Do not reduce or change maintenance and operating space and access provisions that are shown on the drawings. - C. Equipment and Piping Support: Coordinate structural systems necessary for pipe and equipment support with pipe and equipment locations to permit proper installation. - D. Location of pipe sleeves, trenches and chases shall be accurately coordinated with equipment and piping locations. - E. Cutting Holes: - 1. Cut holes through concrete and masonry by rotary core drill. Pneumatic hammer, impact electric, and hand or manual hammer type drill will not be allowed, except as permitted by Resident Engineer where working area space is limited. - 2. Locate holes to avoid interference with structural members such as beams or grade beams. Holes shall be laid out in advance and drilling done only after approval by Resident Engineer. If the Contractor considers it necessary to drill through structural members, this matter shall be referred to Resident Engineer for approval. - 3. Do not penetrate membrane waterproofing. - F. Interconnection of Instrumentation or Control Devices: Generally, electrical and pneumatic interconnections are not shown but must be provided. - G. Minor Piping: Generally, small diameter pipe runs from drips and drains, water cooling, and other service are not shown but must be provided. 23 05 11 - 16 H. Electrical Interconnection of Controls and Instruments: This generally not shown but must be provided. This includes interconnections of sensors, transmitters, transducers, control devices, control and instrumentation panels, instruments and computer workstations. Comply with NFPA-70. ## I. Protection and Cleaning: - 1. Equipment and materials shall be carefully handled, properly stored, and adequately protected to prevent damage before and during installation, in accordance with the manufacturer's recommendations and as approved by the Resident Engineer. Damaged or defective items in the opinion
of the Resident Engineer, shall be replaced. - 2. Protect all finished parts of equipment, such as shafts and bearings where accessible, from rust prior to operation by means of protective grease coating and wrapping. Close pipe openings with caps or plugs during installation. Tightly cover and protect fixtures and equipment against dirt, water chemical, or mechanical injury. At completion of all work thoroughly clean fixtures, exposed materials and equipment. - J. Concrete and Grout: Use concrete and shrink compensating grout 25 MPa (3000 psi) minimum, specified in Section 03 30 00, CAST-IN-PLACE CONCRETE. - K. Install gages, thermometers, valves and other devices with due regard for ease in reading or operating and maintaining said devices. Locate and position thermometers and gages to be easily read by operator or staff standing on floor or walkway provided. Servicing shall not require dismantling adjacent equipment or pipe work. ## L. Work in Existing Building: - Perform as specified in Article, OPERATIONS AND STORAGE AREAS, Article, ALTERATIONS, and Article, RESTORATION of the Section 01 00 00, GENERAL REQUIREMENTS for relocation of existing equipment, alterations and restoration of existing building(s). - 2. As specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, OPERATIONS AND STORAGE AREAS, make alterations to existing service piping at times that will least interfere with normal operation of the facility. - 3. Cut required openings through existing masonry and reinforced concrete using diamond core drills. Use of pneumatic hammer type drills, impact type electric drills, and hand or manual hammer type drills, will be permitted only with approval of the Resident Engineer. Locate openings that will least effect structural slabs, columns, ribs or beams. Refer to the Resident Engineer for determination of proper design for openings through structural sections and opening layouts approval, prior to cutting or drilling into structure. After Resident Engineer's approval, carefully cut opening through construction no larger than absolutely necessary for the required installation. M. Switchgear/Electrical Equipment Drip Protection: Every effort shall be made to eliminate the installation of pipe above electrical and telephone switchgear. If this is not possible, encase pipe in a second pipe with a minimum of joints. Installation of piping, ductwork, leak protection apparatus or other installations foreign to the electrical installation shall be located in the space equal to the width and depth of the equipment and extending from floor to a height of 1.8 m (6 ft.) above the equipment or to ceiling structure, whichever is lower (NFPA 70). ## N. Inaccessible Equipment: - 1. Where the Government determines that the Contractor has installed equipment not conveniently accessible for operation and maintenance, equipment shall be removed and reinstalled or remedial action performed as directed at no additional cost to the Government. - 2. The term "conveniently accessible" is defined as capable of being reached without the use of ladders, or without climbing or crawling under or over obstacles such as motors, fans, pumps, belt guards, transformers, high voltage lines, piping, and ductwork. ## 3.2 TEMPORARY PIPING AND EQUIPMENT - A. Continuity of operation of existing facilities will generally require temporary installation or relocation of equipment and piping. - B. The Contractor shall provide all required facilities in accordance with the requirements of phased construction and maintenance of service. All piping and equipment shall be properly supported, sloped to drain, operate without excessive stress, and shall be insulated where injury can occur to personnel by contact with operating facilities. The requirements of Paragraph 3.1 apply. 23 05 11 - 18 C. Temporary facilities and piping shall be completely removed and any openings in structures sealed. Provide necessary blind flanges and caps to seal open piping remaining in service. ## 3.3 RIGGING - A. Design is based on application of available equipment. Openings in building structures are planned to accommodate design scheme. - B. Alternative methods of equipment delivery may be offered by Contractor and will be considered by Government under specified restrictions of phasing and maintenance of service as well as structural integrity of the building. - C. Close all openings in the building when not required for rigging operations to maintain proper environment in the facility for Government operation and maintenance of service. - D. Contractor shall provide all facilities required to deliver specified equipment and place on foundations. Attachments to structures for rigging purposes and support of equipment on structures shall be Contractor's full responsibility. Upon request, the Government will check structure adequacy and advise Contractor of recommended restrictions. - E. Contractor shall check all clearances, weight limitations and shall offer a rigging plan designed by a Registered Professional Engineer. All modifications to structures, including reinforcement thereof, shall be at Contractor's cost, time and responsibility. - F. Rigging plan and methods shall be referred to Resident Engineer for evaluation prior to actual work. - G. Restore building to original condition upon completion of rigging work. ## 3.4 PIPE AND EQUIPMENT SUPPORTS - A. Where hanger spacing does not correspond with joist or rib spacing, use structural steel channels secured directly to joist and rib structure that will correspond to the required hanger spacing, and then suspend the equipment and piping from the channels. Drill or burn holes in structural steel only with the prior approval of the Resident Engineer. - B. Use of chain, wire or strap hangers; wood for blocking, stays and bracing; or, hangers suspended from piping above will not be permitted. Replace or thoroughly clean rusty products and paint with zinc primer. - C. Use hanger rods that are straight and vertical. Turnbuckles for vertical adjustments may be omitted where limited space prevents use. - Provide a minimum of 15 mm (1/2-inch) clearance between pipe or piping covering and adjacent work. - D. HVAC Horizontal Pipe Support Spacing: Refer to MSS SP-69. Provide additional supports at valves, strainers, in-line pumps and other heavy components. Provide a support within one foot of each elbow. - E. HVAC Vertical Pipe Supports: - 1. Up to 150 mm (6-inch pipe), 9 m (30 feet) long, bolt riser clamps to the pipe below couplings, or welded to the pipe and rests supports securely on the building structure. - 2. Vertical pipe larger than the foregoing, support on base elbows or tees, or substantial pipe legs extending to the building structure. ## F. Overhead Supports: - 1. The basic structural system of the building is designed to sustain the loads imposed by equipment and piping to be supported overhead. - 2. Provide steel structural members, in addition to those shown, of adequate capability to support the imposed loads, located in accordance with the final approved layout of equipment and piping. - 3. Tubing and capillary systems shall be supported in channel troughs. ## G. Floor Supports: - Provide concrete bases, concrete anchor blocks and pedestals, and structural steel systems for support of equipment and piping. Anchor and dowel concrete bases and structural systems to resist forces under operating and seismic conditions (if applicable) without excessive displacement or structural failure. - 2. Do not locate or install bases and supports until equipment mounted thereon has been approved. Size bases to match equipment mounted thereon plus 50 mm (2 inch) excess on all edges. Boiler foundations shall have horizontal dimensions that exceed boiler base frame dimensions by at least 150 mm (6 inches) on all sides. Refer to structural drawings. Bases shall be neatly finished and smoothed, shall have chamfered edges at the top, and shall be suitable for painting. - 3. All equipment shall be shimmed, leveled, firmly anchored, and grouted with epoxy grout. Anchor bolts shall be placed in sleeves, anchored to the bases. Fill the annular space between sleeves and bolts with a granular material to permit alignment and realignment. ## 3.5 MECHANICAL DEMOLITION - A. Rigging access, other than indicated on the drawings, shall be provided by the Contractor after approval for structural integrity by the Resident Engineer. Such access shall be provided without additional cost or time to the Government. Where work is in an operating plant, provide approved protection from dust and debris at all times for the safety of plant personnel and maintenance of plant operation and environment of the plant. - B. In an operating facility, maintain the operation, cleanliness and safety. Government personnel will be carrying on their normal duties of operating, cleaning and maintaining equipment and plant operation. Confine the work to the immediate area concerned; maintain cleanliness and wet down demolished materials to eliminate dust. Do not permit debris to accumulate in the area to the detriment of plant operation. Perform all flame cutting to maintain the fire safety integrity of this plant. Adequate fire extinguishing facilities shall be available at all times. Perform all work in accordance with recognized fire protection standards. Inspection will be made by personnel of the VA Medical Center, and Contractor shall follow all directives of the RE or COTR with regard to rigging, safety, fire safety, and maintenance of operations. - C. Completely remove all piping, wiring, conduit, and other devices associated with the equipment not to be re-used in the new work. This includes all pipe, valves, fittings, insulation, and all hangers including the top connection and any fastenings to building structural systems. Seal all openings, after removal of equipment, pipes, ducts, and other penetrations in roof, walls, floors, in an approved
manner and in accordance with plans and specifications where specifically covered. Structural integrity of the building system shall be maintained. Reference shall also be made to the drawings and specifications of the other disciplines in the project for additional facilities to be demolished or handled. - D. All valves including gate, globe, ball, butterfly and check, all pressure gages and thermometers with wells shall remain Government property and shall be removed and delivered to Resident Engineer and stored as directed. The Contractor shall remove all other material and equipment, devices and demolition debris under these plans and specifications. Such material shall be removed from Government property expeditiously and shall not be allowed to accumulate. ## 3.6 CLEANING AND PAINTING - A. Prior to final inspection and acceptance of the plant and facilities for beneficial use by the Government, the plant facilities, equipment and systems shall be thoroughly cleaned and painted. Refer to Section 09 91 00, PAINTING. - B. In addition, the following special conditions apply: - Cleaning shall be thorough. Use solvents, cleaning materials and methods recommended by the manufacturers for the specific tasks. Remove all rust prior to painting and from surfaces to remain unpainted. Repair scratches, scuffs, and abrasions prior to applying prime and finish coats. - 2. Material And Equipment Not To Be Painted Includes: - a. Motors, controllers, control switches, and safety switches. - b. Control and interlock devices. - c. Regulators. - d. Pressure reducing valves. - e. Control valves and thermostatic elements. - f. Lubrication devices and grease fittings. - g. Copper, brass, aluminum, stainless steel and bronze surfaces. - h. Valve stems and rotating shafts. - i. Pressure gauges and thermometers. - j. Glass. - k. Name plates. - 3. Control and instrument panels shall be cleaned, damaged surfaces repaired, and shall be touched-up with matching paint obtained from panel manufacturer. - 4. Pumps, motors, steel and cast iron bases, and coupling guards shall be cleaned, and shall be touched-up with the same color as utilized by the pump manufacturer - 5. Temporary Facilities: Apply paint to surfaces that do not have existing finish coats. - 6. Final result shall be smooth, even-colored, even-textured factory finish on all items. Completely repaint the entire piece of equipment if necessary to achieve this. ## 3.7 IDENTIFICATION SIGNS - A. Provide laminated plastic signs, with engraved lettering not less than 5 mm (3/16-inch) high, designating functions, for all equipment, switches, motor controllers, relays, meters, control devices, including automatic control valves. Nomenclature and identification symbols shall correspond to that used in maintenance manual, and in diagrams specified elsewhere. Attach by chain, adhesive, or screws. - B. Factory Built Equipment: Metal plate, securely attached, with name and address of manufacturer, serial number, model number, size, performance. - C. Pipe Identification: Refer to Section 09 91 00, PAINTING. ## 3.8 MOTOR AND DRIVE ALIGNMENT A. Direct-connect Drive: Securely mount motor in accurate alignment so that shafts are free from both angular and parallel misalignment when both motor and driven machine are operating at normal temperatures. #### 3.9 LUBRICATION - A. Lubricate all devices requiring lubrication prior to initial operation. Field-check all devices for proper lubrication. - B. Equip all devices with required lubrication fittings or devices. Provide a minimum of one liter (one quart) of oil and 0.5 kg (one pound) of grease of manufacturer's recommended grade and type for each different application; also provide 12 grease sticks for lubricated plug valves. Deliver all materials to Resident Engineer in unopened containers that are properly identified as to application. - C. Provide a separate grease gun with attachments for applicable fittings for each type of grease applied. - D. All lubrication points shall be accessible without disassembling equipment, except to remove access plates. ## 3.10 STARTUP AND TEMPORARY OPERATION Start up equipment as described in equipment specifications. Verify that vibration is within specified tolerance prior to extended operation. Temporary use of equipment is specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, TEMPORARY USE OF MECHANICAL AND ELECTRICAL EQUIPMENT. ## 3.11 OPERATING AND PERFORMANCE TESTS - A. Prior to the final inspection, perform required tests as specified in Section 01 00 00, GENERAL REQUIREMENTS and submit the test reports and records to the Resident Engineer. - B. Should evidence of malfunction in any tested system, or piece of equipment or component part thereof, occur during or as a result of tests, make proper corrections, repairs or replacements, and repeat tests at no additional cost to the Government. - C. When completion of certain work or system occurs at a time when final control settings and adjustments cannot be properly made to make performance tests, then make performance tests for cooling system during first actual seasonal use of system following completion of work. ## 3.12 INSTRUCTIONS TO VA PERSONNEL Provide in accordance with Article, INSTRUCTIONS, of Section 01 00 00, GENERAL REQUIREMENTS. - - - E N D - - - # SECTION 23 05 12 GENERAL MOTOR REQUIREMENTS FOR HVAC EQUIPMENT ## PART 1 - GENERAL #### 1.1 DESCRIPTION: This section specifies the furnishing, installation and connection of motors for HVAC and steam generation equipment. #### 1.2 RELATED WORK: - A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA and SAMPLES. - B. Section 23 05 11, COMMON WORK RESULTS FOR HVAC EQUIPMENT. - C. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS. - D. Section 26 29 11, MOTOR CONTROLLERS. ## 1.3 SUBMITTALS: A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA and SAMPLES, and Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS. ## B. Shop Drawings: - 1. Provide documentation to demonstrate compliance with drawings and specifications. - 2. Include electrical ratings, efficiency, bearing data, power factor, frame size, dimensions, mounting details, materials, horsepower, voltage, phase, speed (RPM), enclosure, starting characteristics, torque characteristics, code letter, full load and locked rotor current, service factor, and lubrication method. ## C. Manuals: - Submit simultaneously with the shop drawings, companion copies of complete installation, maintenance and operating manuals, including technical data sheets and application data. - D. Certification: Two weeks prior to final inspection, unless otherwise noted, submit four copies of the following certification to the Resident Engineer: - Certification that the motors have been applied, installed, adjusted, lubricated, and tested according to manufacturer published recommendations. ## 1.4 APPLICABLE PUBLICATIONS: A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. - B. National Electrical Manufacturers Association (NEMA): - MG 1-2006 Rev. 1 2009 .. Motors and Generators - MG 2-2001 Rev. 1 2007...Safety Standard for Construction and Guide for Selection, Installation and Use of Electric Motors and Generators - C. National Fire Protection Association (NFPA): 70-2008......National Electrical Code (NEC) - D. Institute of Electrical and Electronics Engineers (IEEE): - 112-04......Standard Test Procedure for Polyphase Induction Motors and Generators - E. American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE): 90.1-2007......Energy Standard for Buildings Except Low-Rise Residential Buildings ## PART 2 - PRODUCTS ## 2.1 MOTORS: - A. For alternating current, fractional and integral horsepower motors, NEMA Publications MG 1 and MG 2 shall apply. - B. All material and equipment furnished and installation methods shall conform to the requirements of Section 26 29 11, MOTOR CONTROLLERS; and Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES. Provide all electrical wiring, conduit, and devices necessary for the proper connection, protection and operation of the systems. Provide premium efficiency type motors as scheduled. Unless otherwise specified for a particular application, use electric motors with the following requirements. - C. Single-phase Motors: Motors for centrifugal fans and pumps may be split phase or permanent split capacitor (PSC) type. Provide capacitor-start type for hard starting applications. - D. Voltage ratings shall be as follows: - 1. Single phase: - a. Motors connected to 120-volt systems: 115 volts. - b. Motors connected to 208-volt systems: 200 volts. - c. Motors connected to 240 volt or 480 volt systems: 230/460 volts, dual connection. - 2. Three phase: - a. Motors connected to 208-volt systems: 200 volts. - b. Motors, less than 74.6~kW~(100~HP), connected to 240~volt or 480~volt systems: 208-230/460~volts, dual connection. - c. Motors, 74.6 kW (100 HP) or larger, connected to 240-volt systems: 230 volts. - d. Motors, 74.6 kW (100 HP) or larger, connected to 480-volt systems: 460 volts. - E. Number of phases shall be as follows: - 1. Motors, less than 373 W (1/2 HP): Single phase. - 2. Motors, 373 W (1/2 HP) and larger: 3 phase. - 3. Exceptions: - a. Hermetically sealed motors. - b. Motors for equipment assemblies, less than 746~W (one HP), may be single phase provided the manufacturer of the proposed assemblies cannot supply the assemblies with three phase motors. - F. Motors shall be designed for operating the connected loads continuously in a $40\,^{\circ}\text{C}$ ($104\,^{\circ}\text{F}$) environment, where the motors are installed, without exceeding the NEMA standard temperature rises for the motor insulation. If the motors exceed $40\,^{\circ}\text{C}$ ($104\,^{\circ}\text{F}$), the motors shall be rated for the actual ambient
temperatures. - G. Motor designs, as indicated by the NEMA code letters, shall be coordinated with the connected loads to assure adequate starting and running torque. - H. Motor Enclosures: - 1. Shall be the NEMA types as specified and/or shown on the drawings. - 2. Where the types of motor enclosures are not shown on the drawings, they shall be the NEMA types, which are most suitable for the environmental conditions where the motors are being installed. Enclosure requirements for certain conditions are as follows: - a. Motors located outdoors, indoors in wet or high humidity locations, or in unfiltered airstreams shall be totally enclosed type. - b. Where motors are located in an NEC 511 classified area, provide TEFC explosion proof motor enclosures. - c. Where motors are located in a corrosive environment, provide TEFC enclosures with corrosion resistant finish. - 3. Enclosures shall be primed and finish coated at the factory with manufacturer's prime coat and standard finish. ## I. Special Requirements: - Where motor power requirements of equipment furnished deviate from power shown on plans, provide electrical service designed under the requirements of NFPA 70 without additional time or cost to the Government - 2. Assemblies of motors, starters, controls and interlocks on factory assembled and wired devices shall be in accordance with the requirements of this specification. - 3. Wire and cable materials specified in the electrical division of the specifications shall be modified as follows: - a. Wiring material located where temperatures can exceed 71 degrees C (160 degrees F) shall be stranded copper with Teflon FEP insulation with jacket. This includes wiring on the boilers. - b. Other wiring at boilers and to control panels shall be NFPA 70 designation THWN. - c. Provide shielded conductors or wiring in separate conduits for all instrumentation and control systems where recommended by manufacturer of equipment. - 4. Select motor sizes so that the motors do not operate into the service factor at maximum required loads on the driven equipment. Motors on pumps shall be sized for non-overloading at all points on the pump performance curves. - 5. Motors utilized with variable frequency drives shall be rated "inverter-duty" per NEMA Standard, MG1, Part 31.4.4.2. Provide motor shaft grounding apparatus that will protect bearings from damage from stray currents. - J. Additional requirements for specific motors, as indicated in the other sections listed in Article 1.2, shall also apply. - K. Energy-Efficient Motors (Motor Efficiencies): All permanently wired polyphase motors of 746 Watts (1 HP) or more shall meet the minimum full-load efficiencies as indicated in the following table. Motors of 746 Watts or more with open, drip-proof or totally enclosed fan-cooled enclosures shall be NEMA premium efficiency type, unless otherwise indicated. Motors provided as an integral part of motor driven equipment are excluded from this requirement if a minimum seasonal or overall efficiency requirement is indicated for that equipment by the provisions of another section. Motors not specified as "premium efficiency" shall comply with the Energy Policy Act of 2005 (EPACT). | Minimum Premium Efficiencies | | | | Minimum Premium Efficiencies | | | | |------------------------------|-------|-------|-------|------------------------------|-------|-------|-------| | Open Drip-Proof | | | | Totally Enclosed Fan-Cooled | | | | | Rating | 1200 | 1800 | 3600 | Rating | 1200 | 1800 | 3600 | | kW (HP) | RPM | RPM | RPM | kW (HP) | RPM | RPM | RPM | | 0.746 (1) | 82.5% | 85.5% | 77.0% | 0.746 (1) | 82.5% | 85.5% | 77.0% | | 1.12 (1.5) | 86.5% | 86.5% | 84.0% | 1.12 (1.5) | 87.5% | 86.5% | 84.0% | | 1.49 (2) | 87.5% | 86.5% | 85.5% | 1.49 (2) | 88.5% | 86.5% | 85.5% | | 2.24 (3) | 88.5% | 89.5% | 85.5% | 2.24 (3) | 89.5% | 89.5% | 86.5% | | 3.73 (5) | 89.5% | 89.5% | 86.5% | 3.73 (5) | 89.5% | 89.5% | 88.5% | | 5.60 (7.5) | 90.2% | 91.0% | 88.5% | 5.60 (7.5) | 91.0% | 91.7% | 89.5% | | 7.46 (10) | 91.7% | 91.7% | 89.5% | 7.46 (10) | 91.0% | 91.7% | 90.2% | | 11.2 (15) | 91.7% | 93.0% | 90.2% | 11.2 (15) | 91.7% | 92.4% | 91.0% | | 14.9 (20) | 92.4% | 93.0% | 91.0% | 14.9 (20) | 91.7% | 93.0% | 91.0% | | 18.7 (25) | 93.0% | 93.6% | 91.7% | 18.7 (25) | 93.0% | 93.6% | 91.7% | | 22.4 (30) | 93.6% | 94.1% | 91.7% | 22.4 (30) | 93.0% | 93.6% | 91.7% | | 29.8 (40) | 94.1% | 94.1% | 92.4% | 29.8 (40) | 94.1% | 94.1% | 92.4% | | 37.3 (50) | 94.1% | 94.5% | 93.0% | 37.3 (50) | 94.1% | 94.5% | 93.0% | | 44.8 (60) | 94.5% | 95.0% | 93.6% | 44.8 (60) | 94.5% | 95.0% | 93.6% | | 56.9 (75) | 94.5% | 95.0% | 93.6% | 56.9 (75) | 94.5% | 95.4% | 93.6% | | 74.6 (100) | 95.0% | 95.4% | 93.6% | 74.6 (100) | 95.0% | 95.4% | 94.1% | L. Minimum Power Factor at Full Load and Rated Voltage: 90 percent at 1200 RPM, 1800 RPM and 3600 RPM. # PART 3 - EXECUTION ## 3.1 INSTALLATION: Install motors in accordance with manufacturer's recommendations, the NEC, NEMA, as shown on the drawings and/or as required by other sections of these specifications. ## 3.2 FIELD TESTS A. Perform an electric insulation resistance Test using a megohmmeter on all motors after installation, before start-up. All shall test free from grounds. - B. Perform Load test in accordance with ANSI/IEEE 112, Test Method B, to determine freedom from electrical or mechanical defects and compliance with performance data. - C. Insulation Resistance: Not less than one-half meg-ohm between stator conductors and frame, to be determined at the time of final inspection. - D. All test data shall be complied into a report form for each motor and provided to the contracting officer or their representative. #### 3.3 STARTUP AND TESTING A. Coordinate the startup and contractor testing schedules with Resident Engineer. Provide a minimum of 7 days prior notice. ## 3.4 DEMONSTRATION AND TRAINING A. Provide services of manufacturer's technical representative for four hours to instruct VA personnel in operation and maintenance of units. - - - E N D - - - # SECTION 23 05 41 NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT ## PART 1 - GENERAL #### 1.1 DESCRIPTION Noise criteria, vibration tolerance and vibration isolation for HVAC work. #### 1.2 RELATED WORK - A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA and SAMPLES. - B. Section 23 05 11, COMMON WORK RESULTS FOR HVAC. ## 1.3 QUALITY ASSURANCE A. Refer to article, QUALITY ASSURANCE in specification Section 23 05 11, COMMON WORK RESULTS FOR HVAC. ## B. Noise Criteria: - 1. For equipment which has no sound power ratings scheduled on the plans, the contractor shall select equipment such that the local ordinance noise levels, and OSHA requirements are not exceeded. Selection procedure shall be in accordance with ASHRAE Fundamentals Handbook, Chapter 7, Sound and Vibration. - 2. In absence of specified measurement requirements, measure equipment noise levels three feet from equipment and at an elevation of maximum noise generation. - C. Allowable Vibration Tolerances for Rotating, Non-reciprocating Equipment: Not to exceed a self-excited vibration maximum velocity of 5 mm per second (0.20 inch per second) RMS, filter in, when measured with a vibration meter on bearing caps of machine in vertical, horizontal and axial directions or measured at equipment mounting feet if bearings are concealed. Measurements for internally isolated fans and motors may be made at the mounting feet. ## 1.4 SUBMITTALS - A. Submit in accordance with specification Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES. - B. Manufacturer's Literature and Data: - 1. Vibration isolators: - a. Floor mountings - b. Hangers - c. Snubbers - d. Thrust restraints 23 05 41 - 1 - 2. Bases. - 3. Acoustical enclosures. - C. Isolator manufacturer shall furnish with submittal load calculations for selection of isolators, including supplemental bases, based on lowest operating speed of equipment supported. ## 1.5 APPLICABLE PUBLICATIONS - A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. - B. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (ASHRAE): - 2009Fundamentals Handbook, Chapter 7, Sound and Vibration - C. American Society for Testing and Materials (ASTM): - A123/A123M-09......Standard Specification for Zinc (Hot-Dip Galvanized) Coatings on Iron and Steel Products A307-07b.....Standard Specification for Carbon Steel Bolts and Studs, 60,000 PSI Tensile Strength - D2240-05(2010).....Standard Test Method for Rubber Property Durometer Hardness - D. Manufacturers Standardization (MSS): - SP-58-2009......Pipe Hangers and Supports-Materials, Design and Manufacture - E. Occupational Safety and Health Administration (OSHA): - 29 CFR 1910.95......Occupational Noise Exposure - F. American Society of Civil Engineers (ASCE): - ASCE 7-10Minimum Design Loads for Buildings and Other Structures. - G. International Code Council (ICC): - 2009 IBC......International Building Code. ## PART 2 - PRODUCTS ## 2.1 GENERAL REQUIREMENTS A. Type of isolator, base, and minimum static deflection shall be as required for each specific equipment application as recommended by isolator or equipment manufacturer but subject to minimum requirements indicated herein and in the schedule on the drawings. 23 05 41 - 2 - B. Elastometric Isolators shall comply with ASTM D2240 and be oil resistant neoprene with a maximum stiffness of 60 durometer and have a straight-line deflection curve. - C. Exposure to weather: Isolator housings to be either hot dipped galvanized or powder coated to ASTM B117 salt spray testing standards. Springs to be powder coated or electro galvanized. All hardware to be electro galvanized. In addition provide limit stops to resist wind velocity. Velocity pressure established by wind shall be calculated in accordance with section 1609 of the International
Building Code. A minimum wind velocity of 75 mph shall be employed. - D. Uniform Loading: Select and locate isolators to produce uniform loading and deflection even when equipment weight is not evenly distributed. - E. Color code isolators by type and size for easy identification of capacity. ## 2.2 VIBRATION ISOLATORS - A. Floor Mountings: - 1. Double Deflection Neoprene (Type N): Shall include neoprene covered steel support plated (top and bottom), friction pads, and necessary bolt holes. - 2. Spring Isolators (Type S): Shall be free-standing, laterally stable and include acoustical friction pads and leveling bolts. Isolators shall have a minimum ratio of spring diameter-to-operating spring height of 1.0 and an additional travel to solid equal to 50 percent of rated deflection. - 3. Pads (Type D), Washers (Type W), and Bushings (Type L): Pads shall be natural rubber or neoprene waffle, neoprene and steel waffle, or reinforced duck and neoprene. Washers and bushings shall be reinforced duck and neoprene. Washers and bushings shall be reinforced duck and neoprene. Size pads for a maximum load of 345 kPa (50 pounds per square inch). - B. Hangers: Shall be combination neoprene and springs unless otherwise noted and shall allow for expansion of pipe. - 1. Combination Neoprene and Spring (Type H): Vibration hanger shall contain a spring and double deflection neoprene element in series. Spring shall have a diameter not less than 0.8 of compressed operating spring height. Spring shall have a minimum additional travel of 50 percent between design height and solid height. Spring shall - permit a 15 degree angular misalignment without rubbing on hanger box. - 2. Spring Position Hanger (Type HP): Similar to combination neoprene and spring hanger except hanger shall hold piping at a fixed elevation during installation and include a secondary adjustment feature to transfer load to spring while maintaining same position. - 3. Neoprene (Type HN): Vibration hanger shall contain a double deflection type neoprene isolation element. Hanger rod shall be separated from contact with hanger bracket by a neoprene grommet. - 4. Spring (Type HS): Vibration hanger shall contain a coiled steel spring in series with a neoprene grommet. Spring shall have a diameter not less than 0.8 of compressed operating spring height. Spring shall have a minimum additional travel of 50 percent between design height and solid height. Spring shall permit a 15 degree angular misalignment without rubbing on hanger box. - 5. Hanger supports for piping 50 mm (2 inches) and larger shall have a pointer and scale deflection indicator. ## 2.3 BASES - A. Rails (Type R): Design rails with isolator brackets to reduce mounting height of equipment and cradle machines having legs or bases that do not require a complete supplementary base. To assure adequate stiffness, height of members shall be a minimum of 1/12 of longest base dimension but not less than 100 mm (4 inches). Where rails are used with neoprene mounts for small fans or close coupled pumps, extend rails to compensate overhang of housing. - B. Integral Structural Steel Base (Type B): Design base with isolator brackets to reduce mounting height of equipment which require a complete supplementary rigid base. To assure adequate stiffness, height of members shall be a minimum of 1/12 of longest base dimension, but not less than 100 mm (four inches). - C. Inertia Base (Type I): Base shall be a reinforced concrete inertia base. Pour concrete into a welded steel channel frame, incorporating prelocated equipment anchor bolts and pipe sleeves. Level the concrete to provide a smooth uniform bearing surface for equipment mounting. Provide grout under uneven supports. Channel depth shall be a minimum of 1/12 of longest dimension of base but not less than 150 mm (six inches). Form shall include 13-mm (1/2-inch) reinforcing bars welded in 23 05 41 - 4 place on minimum of 203 mm (eight inch) centers running both ways in a layer 40 mm (1-1/2 inches) above bottom. Use height saving brackets in all mounting locations. Weight of inertia base shall be equal to or greater than weight of equipment supported to provide a maximum peakto-peak displacement of 2 mm (1/16 inch). ## PART 3 - EXECUTION #### 3.1 INSTALLATION #### A. Vibration Isolation: - 1. No metal-to-metal contact will be permitted between fixed and floating parts. - 2. Connections to Equipment: Allow for deflections equal to or greater than equipment deflections. Electrical, drain, piping connections, and other items made to rotating or reciprocating equipment (pumps, compressors, etc.) which rests on vibration isolators, shall be isolated from building structure for first three hangers or supports with a deflection equal to that used on the corresponding equipment. - 3. Common Foundation: Mount each electric motor on same foundation as driven machine. Hold driving motor and driven machine in positive rigid alignment with provision for adjusting motor alignment and belt tension. Bases shall be level throughout length and width. Provide shims to facilitate pipe connections, leveling, and bolting. - 4. Provide heat shields where elastomers are subject to temperatures over 38 degrees C (100 degrees F). - 5. Extend bases for pipe elbow supports at discharge and suction connections at pumps. Pipe elbow supports shall not short circuit pump vibration to structure. - 6. Non-rotating equipment such as heat exchangers and convertors shall be mounted on isolation units having the same static deflection as the isolation hangers or support of the pipe connected to the equipment. - B. Inspection and Adjustments: Check for vibration and noise transmission through connections, piping, ductwork, foundations, and walls. Adjust, repair, or replace isolators as required to reduce vibration and noise transmissions to specified levels. # 3.2 ADJUSTING A. Adjust vibration isolators after piping systems are filled and equipment is at operating weight. VA Tomah Medical Center, WI Replace Chiller-Building 403 100% Bid Documents - B. Adjust limit stops on restrained spring isolators to mount equipment at normal operating height. After equipment installation is complete, adjust limit stops so they are out of contact during normal operation. - C. Attach thrust limits at centerline of thrust and adjust to a maximum of 1/4 inch (6-mm) movement during start and stop. - D. Adjust active height of spring isolators. - - - E N D - - - 23 05 41 - 6 02-01-15 SELECTION GUIDE FOR VIBRATION ISOLATORS | EQUIPMENT | Ŧ | 0 | ON GRADE | м | 20FT | FLOOR | SPAN | 30FT | FLOOR | SPAN | 40FT | FLOOR | SPAN | SOFT | FLOOR | SPAN | |------------------------------|----------|--------------|----------|------|--------------|-------|-------------|--------------|--------------|-------------|--------------|-------|-------------|--------------|-------|-------------| | | | BASE
TYPE | ISOL | MIN | BASE
TYPE | ISOL | MIN
DEFL | BASE
TYPE | ISOL
TYPE | MIN
DEFL | BASE
TYPE | ISOL | MIN
DEFL | BASE
TYPE | ISOL | MIN
DEFL | | REFRIGERATION MACHINES | M NOI | ACHIN | ES | | | | | | | | | | | | | | | PACKAGED HER | HERMETIC | | D | 0.3 | | SP | 0.8 | | SP | 1.5 | 1 1 | SP | 1.5 | 꿈 | SP | 2.5 | | COMPRESSORS AND VACUUM PUMPS | S AND | VACU | UM PU | MPS | | | | | | | | | | | | | | 2 HP AND OVER: | <u></u> | | | | | | | | | | | | | | | | | 500 - 750 RP | RPM | | D | 8.0 | | ß | 8.0 | | ß | 1.5 | 1 1 | ß | 1.5 | | ω | 2.5 | | 750 RPM & OV | OVER | | Д | 8.0 | | ω | 0.8 | | ß | 1.5 | 1 1 | ß | 1.5 | | w | 2.5 | | PUMPS | CONDENSING UN | UNITS | | | | | | | | | | | | | | | | | ALL | | | SS | 0.25 |
 | SS | 0.75 | | SS | 1.5 | CB | SS | 1.5 | | - | NA | | | | | | | | | | | | | | | | | | | # SECTION 23 05 93 TESTING, ADJUSTING, AND BALANCING FOR HVAC ## PART 1 - GENERAL #### 1.1 DESCRIPTION - A. Testing, adjusting, and balancing (TAB) of heating, ventilating and air conditioning (HVAC) systems. TAB includes the following: - 1. Planning systematic TAB procedures. - 2. Design Review Report. - 3. Systems Inspection report. - 4. Systems Readiness Report. - 5. Balancing water distribution systems; adjustment of total system to provide design performance; and testing performance of equipment and automatic controls. - 6. Recording and reporting results. #### B. Definitions: - 1. Basic TAB used in this Section: Chapter 38, "Testing, Adjusting and Balancing" of 2011 ASHRAE Handbook, "HVAC Applications". - 2. TAB: Testing, Adjusting and Balancing; the process of checking and adjusting HVAC systems to meet design objectives. - 3. AABC: Associated Air Balance Council. - 4. NEBB: National Environmental Balancing Bureau. - 5. Hydronic Systems: Includes glycol chilled water. - 6. Flow rate tolerance: The allowable percentage variation, minus to plus, of actual flow rate from values (design) in the contract documents. ## 1.2 RELATED WORK - A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES. - B. Section 23 05 11, COMMON WORK RESULTS FOR HVAC. - C. Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT. - D. Section 23 07 11, HVAC INSULATION - E. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC - F. Section 23 64 00, PACKAGED WATER CHILLERS: Testing Refrigeration Equipment. # 1.3 QUALITY ASSURANCE A. Refer to Articles, Quality Assurance and Submittals, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC. 23 05 93 - 1 # B. Qualifications: - 1. TAB Agency: The TAB agency shall be a subcontractor of the General Contractor and shall report to and be paid by the General Contractor. - 2. The TAB agency shall be either a certified member of AABC or certified by the NEBB to perform TAB service for HVAC,
water balancing and vibrations and sound testing of equipment. The certification shall be maintained for the entire duration of duties specified herein. If, for any reason, the agency loses subject certification during this period, the General Contractor shall immediately notify the Resident Engineer and submit another TAB firm for approval. Any agency that has been the subject of disciplinary action by either the AABC or the NEBB within the five years preceding Contract Award shall not be eligible to perform any work related to the TAB. All work performed in this Section and in other related Sections by the TAB agency shall be considered invalid if the TAB agency loses its certification prior to Contract completion, and the successor agency's review shows unsatisfactory work performed by the predecessor agency. - 3. TAB Specialist: The TAB specialist shall be either a member of AABC or an experienced technician of the Agency certified by NEBB. The certification shall be maintained for the entire duration of duties specified herein. If, for any reason, the Specialist loses subject certification during this period, the General Contractor shall immediately notify the Resident Engineer and submit another TAB Specialist for approval. Any individual that has been the subject of disciplinary action by either the AABC or the NEBB within the five years preceding Contract Award shall not be eligible to perform any duties related to the HVAC systems, including TAB. All work specified in this Section and in other related Sections performed by the TAB specialist shall be considered invalid if the TAB Specialist loses its certification prior to Contract completion and must be performed by an approved successor. - 4. TAB Specialist shall be identified by the General Contractor within 60 days after the notice to proceed. The TAB specialist will be coordinating, scheduling and reporting all TAB work and related 23 05 93 - 2 activities and will provide necessary information as required by the Resident Engineer. The responsibilities would specifically include: - a. Shall directly supervise all TAB work. - b. Shall sign the TAB reports that bear the seal of the TAB standard. The reports shall be accompanied by report forms and schematic drawings required by the TAB standard, AABC or NEBB. - c. Would follow all TAB work through its satisfactory completion. - d. Shall provide final markings of settings of all HVAC adjustment devices. - e. Permanently mark location of duct test ports. - 5. All TAB technicians performing actual TAB work shall be experienced and must have done satisfactory work on a minimum of 3 projects comparable in size and complexity to this project. Qualifications must be certified by the TAB agency in writing. The lead technician shall be certified by AABC or NEBB - C. Test Equipment Criteria: The instrumentation shall meet the accuracy/calibration requirements established by AABC National Standards or by NEBB Procedural Standards for Testing, Adjusting and Balancing of Environmental Systems and instrument manufacturer. Provide calibration history of the instruments to be used for test and balance purpose. # D. Tab Criteria: - One or more of the applicable AABC, NEBB or SMACNA publications, supplemented by ASHRAE Handbook "HVAC Applications" Chapter 38, and requirements stated herein shall be the basis for planning, procedures, and reports. - 2. Flow rate tolerance: Following tolerances are allowed. For tolerances not mentioned herein follow 2011 ASHRAE Handbook "HVAC Applications", Chapter 38, as a guideline. - a. Glycol chilled water pumps: Minus 0 percent to plus 5 percent. - b. Glycol chilled water coils: Minus O percent to plus 5 percent. - 3. Systems shall be adjusted for energy efficient operation as described in PART 3. - 4. Typical TAB procedures and results shall be demonstrated to the Resident Engineer for one hydronic system (pumps and coils) as follows: - a. When field TAB work begins. ## 1.4 SUBMITTALS - A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES. - B. Submit names and qualifications of TAB agency and TAB specialists within 60 days after the notice to proceed. Submit information on three recently completed projects and a list of proposed test equipment. - C. For use by the Resident Engineer staff, submit one complete set of applicable AABC or NEBB publications that will be the basis of TAB work. - D. Submit Following for Review and Approval: - 1. Design Review Report within 60 days for conventional design projects. - 2. Systems inspection report on equipment and installation for conformance with design. - 3. Systems Readiness Report. - 4. Intermediate and Final TAB reports covering flow balance and adjustments, and performance tests. - 5. Include in final reports uncorrected installation deficiencies noted during TAB and applicable explanatory comments on test results that differ from design requirements. - E. Prior to request for Final or Partial Final inspection, submit completed Test and Balance report for the area. # 1.5 APPLICABLE PUBLICATIONS - A. The following publications form a part of this specification to the extent indicated by the reference thereto. In text the publications are referenced to by the acronym of the organization. - B. American Society of Heating, Refrigerating and Air Conditioning Engineers, Inc. (ASHRAE): - C. Associated Air Balance Council (AABC): - 2002......AABC National Standards for Total System Balance - D. National Environmental Balancing Bureau (NEBB): - 7^{th} Edition 2005Procedural Standards for Testing, Adjusting, Balancing of Environmental Systems 2nd Edition 2006Procedural Standards for the Measurement of Sound and Vibration E. Sheet Metal and Air Conditioning Contractors National Association (SMACNA): 3rd Edition 2002HVAC SYSTEMS Testing, Adjusting and Balancing ## PART 2 - PRODUCTS #### 2.1 INSULATION REPAIR MATERIAL See Section 23 07 11, HVAC INSULATION Provide for repair of insulation removed or damaged for TAB work. ## PART 3 - EXECUTION ## 3.1 GENERAL - A. Refer to TAB Criteria in Article, Quality Assurance. - B. Obtain applicable contract documents and copies of approved submittals for HVAC equipment and automatic control systems. ## 3.2 DESIGN REVIEW REPORT The TAB Specialist shall review the Contract Plans and specifications and advise the Resident Engineer of any design deficiencies that would prevent the HVAC systems from effectively operating in accordance with the sequence of operation specified or prevent the effective and accurate TAB of the system. The TAB Specialist shall provide a report individually listing each deficiency and the corresponding proposed corrective action necessary for proper system operation. # 3.3 SYSTEMS INSPECTION REPORT - A. Inspect equipment and installation for conformance with design. - B. The inspection and report is to be done after chilled water equipment is on site and installation has begun, but well in advance of performance testing and balancing work. The purpose of the inspection is to identify and report deviations from design and ensure that systems will be ready for TAB at the appropriate time. - C. Reports: Follow check list format developed by AABC, NEBB or SMACNA, supplemented by narrative comments, with emphasis on air handling units and fans. Check for conformance with submittals. # 3.4 SYSTEM READINESS REPORT A. The TAB Contractor shall measure existing water flow rates associated with existing system as indicated on drawings. Submit report of findings to resident engineer. - B. Inspect each System to ensure that it is complete including installation and operation of controls. Submit report to RE in standard format and forms. - C. Verify that all items such as piping, ports, connectors, etc., that is required for TAB are installed. Provide a report to the Resident Engineer. ## 3.5 TAB REPORTS A. The TAB contractor shall provide raw data immediately in writing to the Resident Engineer if there is a problem in achieving intended results before submitting a formal report. #### 3.6 TAB PROCEDURES - A. Tab shall be performed in accordance with the requirement of the Standard under which TAB agency is certified by either AABC or NEBB. - B. General: During TAB all related system components shall be in full operation. Pump rotation, motor loads and equipment vibration shall be checked and corrected as necessary before proceeding with TAB. Set controls and/or block off parts of distribution systems to simulate design operation of variable volume water systems for test and balance work. - C. Coordinate TAB procedures with existing systems and any phased construction completion requirements for the project. Provide TAB reports for pre construction water flow rate. - D. Allow 21 days time in construction schedule for TAB and submission of all reports for an organized and timely correction of deficiencies. - E. Water Balance and Equipment Test: Include circulating pumps economizer, and air handler cooling coils: - Coordinate water chiller flow balancing with Section 23 64 00, PACKAGED WATER CHILLERS. Include flow testing and balancing of chiller economizer. - Adjust flow rates for equipment. Set coils and evaporator to values on approved equipment submittals, if different from values on contract drawings. - 3. Primary only variable volume systems: Coordinate TAB with Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC. Balance system at design fluid flow and then verify that variable flow controls function as designed. Coordinate minimum flow with chiller supplier and controls contractor to assure air handler three way cooling coil - valve flows pass minimum flow. As required, controls contractor to replace two way valves with three way. - 4. Record final measurements for hydronic equipment on performance data sheets. Include entering and leaving water temperatures for cooling coils and economizer. Include entering and leaving
air temperatures (DB/WB for cooling coils) for air handling units and economizer. # 3.7 MARKING OF SETTINGS Following approval of Tab final Report, the setting of all HVAC adjustment devices including valves shall be permanently marked by the TAB Specialist so that adjustment can be restored if disturbed at any time. Style and colors used for markings shall be coordinated with the Resident Engineer. - - E N D - - - 23 05 93 - 7 # SECTION 23 07 11 HVAC INSULATION # PART 1 - GENERAL # 1.1 DESCRIPTION - A. Field applied insulation for thermal efficiency and condensation control for - 1. HVAC piping and equipment. #### B. Definitions - 1. ASJ: All service jacket, white finish facing or jacket. - 2. Air conditioned space: Space having air temperature and/or humidity controlled by mechanical equipment. - 3. Cold: Equipment, ductwork or piping handling media at design temperature of 16 degrees C (60 degrees F) or below. - 4. Concealed: Piping above ceilings and in chases, and pipe spaces. - 5. Exposed: Piping, and equipment exposed to view in finished areas including mechanical and electrical equipment rooms or exposed to outdoor weather. Attics and crawl spaces where air handling units are located are considered to be mechanical rooms. Shafts, chases, unfinished attics, crawl spaces and pipe basements are not considered finished areas. - 6. FSK: Foil-scrim-kraft facing. - 7. Hot: Piping handling media above 41 degrees C (105 degrees F). - 8. Density: kg/m^3 kilograms per cubic meter (Pcf pounds per cubic foot). - 9. Runouts: Branch pipe connections up to 25-mm (one-inch) nominal size to fan coil units or reheat coils for terminal units. - 10. Thermal conductance: Heat flow rate through materials. - a. Flat surface: Watt per square meter (BTU per hour per square foot). - b. Pipe or Cylinder: Watt per square meter (BTU per hour per linear foot). - 11. Thermal Conductivity (k): Watt per meter, per degree C (BTU per inch thickness, per hour, per square foot, per degree F temperature difference). - 12. Vapor Retarder (Vapor Barrier): A material which retards the transmission (migration) of water vapor. Performance of the vapor retarder is rated in terms of permeance (perms). For the purpose of this specification, vapor retarders shall have a maximum published permeance of 0.1 perms and vapor barriers shall have a maximum published permeance of 0.001 perms. - 13. HPS: High pressure steam (415 kPa [60 psig] and above). - 14. HPR: High pressure steam condensate return. - 15. MPS: Medium pressure steam (110 kPa [16 psig] thru 414 kPa [59 psig]. - 16. MPR: Medium pressure steam condensate return. - 17. LPS: Low pressure steam (103 kPa [15 psig] and below). - 18. LPR: Low pressure steam condensate gravity return. - 19. PC: Pumped condensate. - 20. HWH: Hot water heating supply. - 21. HWHR: Hot water heating return. - 22. CW: Cold water. - 23. SW: Soft water. - 24. HW: Hot water. - 25. GCS: Chilled glycol-water supply. - 26. GCR: Chilled glycol-water return. - 27. RS: Refrigerant suction. - 28. PVDC: Polyvinylidene chloride vapor retarder jacketing, white. # 1.2 RELATED WORK - A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES. - B. Section 07 84 00, FIRESTOPPING. - C. Section 23 05 11, COMMON WORK RESULTS FOR HVAC. - D. Section 23 21 13, HYDRONIC PIPING. ## 1.3 QUALITY ASSURANCE - A. Refer to article QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC. - B. Criteria: - 1. Comply with NFPA 90A, particularly paragraphs 4.3.3.1 through 4.3.3.6, 4.3.10.2.6, and 5.4.6.4, parts of which are quoted as follows: - **4.3.3.1** Pipe insulation and coverings, duct coverings, duct linings, vapor retarder facings, adhesives, fasteners, tapes, and supplementary materials added to air ducts, plenums, panels, and duct silencers used in duct systems, unless otherwise provided for in <u>4.3.3.1.1</u> or <u>4.3.3.1.2</u>, shall have, in the form in which they are used, a maximum flame spread index of 25 without evidence of continued progressive combustion and a maximum smoke developed index of 50 when tested in accordance with NFPA 255, 23 07 11 - 2 Standard Method of Test of Surface Burning Characteristics of Building Materials. - **4.3.3.1.1** Where these products are to be applied with adhesives, they shall be tested with such adhesives applied, or the adhesives used shall have a maximum flame spread index of 25 and a maximum smoke developed index of 50 when in the final dry state. (See 4.2.4.2.) - **4.3.3.1.2** The flame spread and smoke developed index requirements of $\frac{4.3.3.1.1}{4.3.3.1.1}$ shall not apply to air duct weatherproof coverings where they are located entirely outside of a building, do not penetrate a wall or roof, and do not create an exposure hazard. - 4.3.3.2 Closure systems for use with rigid and flexible air ducts tested in accordance with UL 181, Standard for Safety Factory-Made Air Ducts and Air Connectors, shall have been tested, listed, and used in accordance with the conditions of their listings, in accordance with one of the following: - (1) UL 181A, Standard for Safety Closure Systems for Use with Rigid Air Ducts and Air Connectors - (2) UL 181B, Standard for Safety Closure Systems for Use with Flexible Air Ducts and Air Connectors - 4.3.3.3 Air duct, panel, and plenum coverings and linings, and pipe insulation and coverings shall not flame, glow, smolder, or smoke when tested in accordance with a similar test for pipe covering, ASTM C 411, Standard Test Method for Hot-Surface Performance of High-Temperature Thermal Insulation, at the temperature to which they are exposed in service. - 4.3.3.3.1 In no case shall the test temperature be below 121°C (250°F). - 4.3.3.4 Air duct coverings shall not extend through walls or floors that are required to be fire stopped or required to have a fire resistance rating, unless such coverings meet the requirements of 5.4.6.4. - 4.3.3.5* Air duct linings shall be interrupted at fire dampers to prevent interference with the operation of devices. - 4.3.3.6 Air duct coverings shall not be installed so as to conceal or prevent the use of any service opening. - 4.3.10.2.6 Materials exposed to the airflow shall be noncombustible or limited combustible and have a maximum smoke developed index of 50 or comply with the following. - 4.3.10.2.6.1 Electrical wires and cables and optical fiber cables shall be listed as noncombustible or limited combustible and have a maximum smoke developed index of 50 or shall be listed as having a maximum peak optical density of 0.5 or less, an average optical density of 0.15 or less, and a maximum flame spread distance of 1.5 m (5 ft) or less when tested in accordance with NFPA 262, Standard Method of Test for Flame Travel and Smoke of Wires and Cables for Use in Air-Handling Spaces. - 4.3.10.2.6.4 Optical-fiber and communication raceways shall be listed as having a maximum peak optical density of 0.5 or less, 23 07 11 - 3 an average optical density of 0.15 or less, and a maximum flame spread distance of 1.5 m (5 ft) or less when tested in accordance with UL 2024, Standard for Safety Optical-Fiber Cable Raceway. - 4.3.10.2.6.6 Supplementary materials for air distribution systems shall be permitted when complying with the provisions of 4.3.3. - 2. Test methods: ASTM E84, UL 723, or NFPA 255. - 3. Specified k factors are at 24 degrees C (75 degrees F) mean temperature unless stated otherwise. Where optional thermal insulation material is used, select thickness to provide thermal conductance no greater than that for the specified material. For pipe, use insulation manufacturer's published heat flow tables. For domestic hot water supply and return, run out insulation and condensation control insulation, no thickness adjustment need be made. - 4. All materials shall be compatible and suitable for service temperature, and shall not contribute to corrosion or otherwise attack surface to which applied in either the wet or dry state. - C. Every package or standard container of insulation or accessories delivered to the job site for use must have a manufacturer's stamp or label giving the name of the manufacturer and description of the material. ## 1.4 SUBMITTALS A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES. # B. Shop Drawings: - All information, clearly presented, shall be included to determine compliance with drawings and specifications and ASTM, federal and military specifications. - a. Insulation materials: Specify each type used and state surface burning characteristics. - b. Insulation facings and jackets: Each type used. Make it clear that white finish will be furnished for exposed ductwork, casings and equipment. - c. Insulation accessory materials: Each type used. - d. Manufacturer's installation and fitting fabrication instructions for flexible unicellular insulation. - e. Make reference to applicable specification paragraph numbers for coordination. #### 1.5 STORAGE AND HANDLING OF MATERIAL A. Store materials in clean and dry environment, pipe covering jackets shall be clean and unmarred. Place adhesives in original containers. Maintain ambient temperatures and conditions as required by printed instructions of manufacturers of adhesives, mastics and finishing cements. #### 1.6 APPLICABLE PUBLICATIONS - A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by basic designation only. - - MIL-C-19565C (1)-88.....Coating Compounds, Thermal Insulation, Fire-and Water-Resistant, Vapor-Barrier - MIL-C-20079H-87......Cloth, Glass; Tape, Textile Glass; and Thread, Glass and Wire-Reinforced Glass - D. American Society for Testing and Materials (ASTM): - A167-99(2004)......Standard Specification for Stainless and Heat-Resisting Chromium-Nickel Steel Plate, Sheet, and Strip - B209-07.....Standard Specification for Aluminum and Aluminum-Alloy Sheet and Plate - C411-05......Standard test method for Hot-Surface
Performance of High-Temperature Thermal Insulation - C449-07.....Standard Specification for Mineral Fiber Hydraulic-Setting Thermal Insulating and Finishing Cement - C533-09......Standard Specification for Calcium Silicate Block and Pipe Thermal Insulation | C534-08Standard Specification for Preformed Flexible | |---| | Elastomeric Cellular Thermal Insulation in | | Sheet and Tubular Form | | C547-07Standard Specification for Mineral Fiber pipe | | Insulation | | C552-07Standard Specification for Cellular Glass | | Thermal Insulation | | C553-08Standard Specification for Mineral Fiber | | Blanket Thermal Insulation for Commercial and | | Industrial Applications | | C585-09Standard Practice for Inner and Outer Diameters | | of Rigid Thermal Insulation for Nominal Sizes | | of Pipe and Tubing (NPS System) R (1998) | | C612-10Standard Specification for Mineral Fiber Block | | and Board Thermal Insulation | | C1126-04Standard Specification for Faced or Unfaced | | Rigid Cellular Phenolic Thermal Insulation | | C1136-10Standard Specification for Flexible, Low | | Permeance Vapor Retarders for Thermal | | Insulation | | D1668-97a (2006)Standard Specification for Glass Fabrics (Woven | | and Treated) for Roofing and Waterproofing | | E84-10Standard Test Method for Surface Burning | | Characteristics of Building | | Materials | | E119-09cStandard Test Method for Fire Tests of Building | | Construction and Materials | | E. National Fire Protection Association (NFPA): | | 101-09Life Safety Code | | 251-06Standard methods of Tests of Fire Endurance of | | Building Construction Materials | | 255-06Standard Method of tests of Surface Burning | | Characteristics of Building Materials | | F. Underwriters Laboratories, Inc (UL): | | 723UL Standard for Safety Test for Surface Burning | | Characteristics of Building Materials with | | Revision of 09/08 | 23 07 11 - 6 VA Tomah Medical Center, WI Replace Chiller-Building 403 100% Bid Documents G. Manufacturer's Standardization Society of the Valve and Fitting Industry (MSS): SP58-2009......Pipe Hangers and Supports Materials, Design, and Manufacture # PART 2 - PRODUCTS ## 2.1 MINERAL FIBER OR FIBER GLASS - A. ASTM C612 (Board, Block), Class 1 or 2, density 48 kg/m³ (3 pcf), k = 0.037 (0.26) at 24 degrees C (75 degrees F), external insulation for temperatures up to 204 degrees C (400 degrees F) with foil scrim (FSK) facing. - B. ASTM C547 (Pipe Fitting Insulation and Preformed Pipe Insulation), Class 1, k = 0.037 (0.26) at 24 degrees C (75 degrees F), for use at temperatures up to 230 degrees C (450 degrees F) with an all service vapor retarder jacket with polyvinyl chloride premolded fitting covering. # 2.2 MINERAL WOOL OR REFRACTORY FIBER A. Comply with Standard ASTM C612, Class 3, 450 degrees C (850 degrees F). #### 2.3 RIGID CELLULAR PHENOLIC FOAM - A. Preformed (molded) pipe insulation, ASTM C1126, type III, grade 1, k = 0.021(0.15) at 10 degrees C (50 degrees F), for use at temperatures up to 121 degrees C (250 degrees F) with all service vapor retarder jacket with polyvinyl chloride premolded fitting covering. - B. Equipment and Duct Insulation, ASTM C 1126, type II, grade 1, k=0.021 (0.15) at 10 degrees C (50 degrees F), for use at temperatures up to 121 degrees C (250 degrees F) with rigid cellular phenolic insulation and covering, and all service vapor retarder jacket. # 2.4 CELLULAR GLASS CLOSED-CELL - A. Comply with Standard ASTM C177, C518, density 120 kg/m³ (7.5 pcf) nominal, k = 0.033 (0.29) at 240 degrees C (75 degrees F). - B. Pipe insulation for use at temperatures up to 200 degrees C (400 degrees F) with all service vapor retarder jacket. # 2.5 POLYISOCYANURATE CLOSED-CELL RIGID A. Preformed (fabricated) pipe insulation, ASTM C591, type IV, K=0.027(0.19) at 24 degrees C (75 degrees F), flame spread not over 25, smoke developed not over 50, for use at temperatures up to 149 degree C (300 degree F) with factory applied PVDC or all service vapor retarder jacket with polyvinyl chloride premolded fitting covers. B. Equipment and duct insulation, ASTM C 591, type IV, K=0.027(0.19) at 24 degrees C (75 degrees F), for use at temperatures up to 149 degrees C (300 degrees F) with PVDC or all service jacket vapor retarder jacket. ## 2.6 FLEXIBLE ELASTOMERIC CELLULAR THERMAL ASTM C177, C518, k = 0.039 (0.27) at 24 degrees C (75 degrees F), flame spread not over 25, smoke developed not over 50, for temperatures from minus 4 degrees C (40 degrees F) to 93 degrees C (200 degrees F). No jacket required. ## 2.7 INSULATION FACINGS AND JACKETS - A. Vapor Retarder, higher strength with low water permeance = 0.02 or less perm rating, Beach puncture 50 units for insulation facing on exposed ductwork, casings and equipment, and for pipe insulation jackets. Facings and jackets shall be all service type (ASJ) or PVDC Vapor Retarder jacketing. - B. ASJ jacket shall be white kraft bonded to 0.025 mm (1 mil) thick aluminum foil, fiberglass reinforced, with pressure sensitive adhesive closure. Comply with ASTM C1136. Beach puncture 50 units, Suitable for painting without sizing. Jackets shall have minimum 40 mm (1-1/2 inch) lap on longitudinal joints and minimum 75 mm (3 inch) butt strip on end joints. Butt strip material shall be same as the jacket. Lap and butt strips shall be self-sealing type with factory-applied pressure sensitive adhesive. - C. Vapor Retarder medium strength with low water vapor permeance of 0.02 or less perm rating), Beach puncture 25 units: Foil-Scrim-Kraft (FSK) or PVDC vapor retarder jacketing type for concealed ductwork and equipment. - D. Field applied vapor barrier jackets shall be provided, in addition to the specified facings and jackets, on all exterior piping as well as on interior piping exposed to outdoor air (i.e.; in ventilated attics, piping in ventilated (not air conditioned) spaces, etc.), in high humidity areas, conveying fluids below ambient temperature. The vapor barrier jacket shall consist of a multi-layer laminated cladding with a maximum water vapor permeance of 0.001 perms. The minimum puncture resistance shall be 35 cm-kg (30 inch-pounds) for interior locations and 92 cm-kg (80 inch-pounds) for exterior or exposed locations or where the insulation is subject to damage. - E. Glass Cloth Jackets: Presized, minimum 0.18 kg per square meter (7.8 ounces per square yard), 2000 kPa (300 psig) bursting strength with integral vapor retarder where required or specified. Weather proof if utilized for outside service. - F. Factory composite materials may be used provided that they have been tested and certified by the manufacturer. - G. Pipe fitting insulation covering (jackets): Fitting covering shall be premolded to match shape of fitting and shall be polyvinyl chloride (PVC) conforming to Fed Spec L-P-335, composition A, Type II Grade GU, and Type III, minimum thickness 0.7 mm (0.03 inches). Provide color matching vapor retarder pressure sensitive tape. - H. Aluminum Jacket-Piping systems: ASTM B209, 3003 alloy, H-14 temper, 0.6 mm (0.023 inch) minimum thickness with locking longitudinal joints. Jackets for elbows, tees and other fittings shall be factory-fabricated to match shape of fitting and of 0.6 mm (0.024) inch minimum thickness aluminum. Fittings shall be of same construction as straight run jackets but need not be of the same alloy. Factory-fabricated stainless steel bands shall be installed on all circumferential joints. Bands shall be 13 mm (0.5 inch) wide on 450 mm (18 inch) centers. System shall be weatherproof if utilized for outside service. # 2.8 PIPE COVERING PROTECTION SADDLES A. Cold pipe support: Premolded pipe insulation 180 degrees (half-shells) on bottom half of pipe at supports. Material shall be cellular glass or high density Polyisocyanurate insulation of the same thickness as adjacent insulation. Density of Polyisocyanurate insulation shall be a minimum of 48 kg/m^3 (3.0 pcf). | Nominal Pipe Size and Accessor | ries Material (Insert Blocks) | |--------------------------------|-------------------------------| | Nominal Pipe Size mm (inches) | Insert Blocks mm (inches) | | Up through 125 (5) | 150 (6) long | | 150 (6) | 150 (6) long | # 2.9 ADHESIVE, MASTIC, CEMENT - A. Mil. Spec. MIL-A-3316, Class 1: Jacket and lap adhesive and protective finish coating for insulation. - B. Mil. Spec. MIL-A-3316, Class 2: Adhesive for laps and for adhering insulation to metal surfaces. - C. Mil. Spec. MIL-A-24179, Type II Class 1: Adhesive for installing flexible unicellular insulation and for laps and general use. - D. Mil. Spec. MIL-C-19565, Type I: Protective finish for outdoor use. - E. Mil. Spec. MIL-C-19565, Type I or Type II: Vapor barrier compound for indoor use. - F. ASTM C449: Mineral fiber hydraulic-setting thermal insulating and finishing cement. - G. Other: Insulation manufacturers' published recommendations. ### 2.10 MECHANICAL FASTENERS - A. Pins, anchors: Welded pins, or metal or nylon anchors with galvanized steel-coated or fiber washer, or clips. Pin diameter shall be as recommended by the insulation manufacturer. - B. Staples: Outward clinching monel or galvanized steel. - C. Wire: 1.3 mm thick (18 gage) soft annealed galvanized or 1.9 mm (14 gage) copper clad steel or nickel copper alloy. - D. Bands: 13 mm (0.5 inch) nominal width, brass, galvanized steel, aluminum or stainless steel. # 2.11 REINFORCEMENT AND FINISHES - A. Glass fabric, open weave: ASTM D1668, Type III (resin treated) and Type I (asphalt treated). - B. Glass fiber fitting tape: Mil. Spec MIL-C-20079, Type II, Class 1. - C. Tape for Flexible Elastomeric Cellular Insulation: As recommended by the insulation manufacturer. - D. Hexagonal wire netting: 25 mm (one inch) mesh, 0.85 mm thick (22 gage) galvanized steel. - E. Corner beads: 50 mm (2 inch) by 50 mm (2 inch), 0.55 mm thick (26 gage) galvanized steel; or, 25 mm (1 inch) by 25 mm (1 inch), 0.47 mm thick (28 gage) aluminum angle
adhered to 50 mm (2 inch) by 50 mm (2 inch) Kraft paper. - F. PVC fitting cover: Fed. Spec L-P-535, Composition A, 11-86 Type II, Grade GU, with Form B Mineral Fiber insert, for media temperature 4 degrees C (40 degrees F) to 121 degrees C (250 degrees F). Below 4 degrees C (40 degrees F) and above 121 degrees C (250 degrees F). Provide double layer insert. Provide color matching vapor barrier pressure sensitive tape. #### 2.12 FIRESTOPPING MATERIAL Other than pipe and duct insulation, refer to Section 07 84 00 FIRESTOPPING. ## 2.13 FLAME AND SMOKE Unless shown otherwise all assembled systems shall meet flame spread 25 and smoke developed 50 rating as developed under ASTM, NFPA and UL standards and specifications. See paragraph 1.3 "Quality Assurance". ## PART 3 - EXECUTION ## 3.1 GENERAL REQUIREMENTS - A. Required pressure tests of piping joints and connections shall be completed and the work approved by the Resident Engineer for application of insulation. Surface shall be clean and dry with all foreign materials, such as dirt, oil, loose scale and rust removed. - B. Except for specific exceptions, insulate entire specified equipment and piping (pipe, fittings, valves, accessories) systems. Insulate each pipe individually. Do not use scrap pieces of insulation where a full length section will fit. - C. Insulation materials shall be installed in a first class manner with smooth and even surfaces, with jackets and facings drawn tight and smoothly cemented down at all laps. Insulation shall be continuous through all sleeves and openings. Vapor retarders shall be continuous and uninterrupted throughout systems with operating temperature 16 degrees C (60 degrees F) and below. Lap and seal vapor retarder over ends and exposed edges of insulation. Anchors, supports and other metal projections through insulation on cold surfaces shall be insulated and vapor sealed for a minimum length of 150 mm (6 inches). - D. Install vapor stops at all insulation terminations on either side of valves, pumps and equipment and particularly in straight lengths of pipe insulation. - E. Construct insulation on parts of equipment such as chilled water pumps and heads of chillers, convertors and heat exchangers that must be opened periodically for maintenance or repair, so insulation can be removed and replaced without damage. Install insulation with bolted 1 mm thick (20 gage) galvanized steel or aluminum covers as complete units, or in sections, with all necessary supports, and split to coincide with flange/split of the equipment. - F. Protect all insulations outside of buildings with aluminum jacket using lock joint or other approved system for a continuous weather tight system. Access doors and other items requiring maintenance or access shall be removable and sealable. - G. Insulate thermal inertia (buffer) tank. - H. Apply insulation materials subject to the manufacturer's recommended temperature limits. Apply adhesives, mastic and coatings at the manufacturer's recommended minimum coverage. - I. Elbows, flanges and other fittings shall be insulated with the same material vapor barrier and jacket as is used on the pipe straights. The elbow/ fitting insulation shall be factory prefabricated to the necessary size and shape to fit on the elbow/ fitting. Use of polyurethane spray-foam to fill a PVC elbow jacket is prohibited on cold applications. - J. Firestop Pipe insulation: - 1. Provide firestopping insulation at fire and smoke barriers through penetrations. Fire stopping insulation shall be UL listed as defines in Section 07 84 00, FIRESTOPPING. - 2. Pipe penetrations requiring fire stop insulation including, but not limited to the following: - a. Pipe risers through floors - b. Pipe chase walls and floors - c. Smoke partitions - d. Fire partitions - K. Provide vapor barrier jackets over insulation as follows: - 1. All chilled water piping, equipment, and tanks exposed to outdoor weather. - All interior piping conveying fluids exposed to outdoor air (i.e. in attics, ventilated (not air conditioned) spaces, etc.), below ambient air temperature. - L. Provide metal jackets over insulation as follows: - 1. All piping, equipment, and tanks exposed to outdoor weather. - 2. A 50 mm (2 inch) overlap is required at longitudinal and circumferential joints. # 3.2 INSULATION INSTALLATION A. Mineral Fiber Board: 1. Faced board: Apply board on pins spaced not more than 300 mm (12 inches) on center each way, and not less than 75 mm (3 inches) from each edge of board. In addition to pins, apply insulation bonding adhesive to entire underside of horizontal metal surfaces. Butt insulation edges tightly and seal all joints with laps and butt strips. After applying speed clips cut pins off flush and apply vapor seal patches over clips. ## 2. Plain board: - a. Insulation shall be scored, beveled or mitered to provide tight joints and be secured to equipment with bands spaced 225 mm (9 inches) on center for irregular surfaces or with pins and clips on flat surfaces. Use corner beads to protect edges of insulation. - b. For cold equipment: Apply meshed glass fabric in a tack coat 1.5 to 1.7 square meter per liter (60 to 70 square feet per gallon) of vapor mastic and finish with mastic at 0.3 to 0.4 square meter per liter (12 to 15 square feet per gallon) over the entire fabric surface. ## B. Molded Mineral Fiber Pipe and Tubing Covering: - 1. Fit insulation to pipe, aligning longitudinal joints. Seal longitudinal joint laps and circumferential butt strips by rubbing hard with a nylon sealing tool to assure a positive seal. Staples may be used to assist in securing insulation. Seal all vapor retarder penetrations on cold piping with a generous application of vapor barrier mastic. Provide inserts and install with metal insulation shields at outside pipe supports. - 2. Contractor's options for fitting, flange and valve insulation: - a. Factory molded, ASTM C547 or field mitered sections, joined with adhesive or wired in place. For cold fittings, 16 degrees C (60 degrees F) or less, vapor seal with a layer of glass fitting tape imbedded between two 2 mm (1/16 inch) coats of vapor barrier mastic. - b. Fitting tape shall extend over the adjacent pipe insulation and overlap on itself at least 50 mm (2 inches). - 3. Nominal thickness in millimeters and inches specified in the schedule at the end of this section. # C. Rigid Cellular Phenolic Foam: - 1. Rigid closed cell phenolic insulation may be provided for piping, and equipment for temperatures up to 121 degrees C (250 degrees F). - 2. Note the NFPA 90A burning characteristics requirements of 25/50 in paragraph 1.3.B - 3. Provide secure attachment facilities such as welding pins. - 4. Apply insulation with joints tightly drawn together - 5. Apply adhesives, coverings, neatly finished at fittings, and valves. - 6. Final installation shall be smooth, tight, neatly finished at all edges. - 7. Minimum thickness in millimeters (inches) specified in the schedule at the end of this section. ## D. Cellular Glass Insulation: - 1. Pipe and tubing, covering nominal thickness in millimeters and inches as specified in the schedule at the end of this section. - 2. Underground Piping Other than or in lieu of that Specified in Section 23 21 13, HYDRONIC PIPING: Type II, factory jacketed with a 3 mm laminate jacketing consisting of 3000 mm x 3000 mm (10 ft x 10 ft) asphalt impregnated glass fabric, bituminous mastic and outside protective plastic film. - a. As scheduled at the end of this section for chilled water piping. - b. Provide expansion chambers for pipe loops, anchors and wall penetrations as recommended by the insulation manufacturer. - 3. Cold equipment: 50 mm (2 inch) thick insulation faced with ASJ for chilled water pumps, water filters, chemical feeder pots or tanks, expansion tanks, air separators, buffer (thermal inertia) tanks, and air purgers. Metal jacket equipment located exterior to building. # E. Polyisocyanurate Closed-Cell Rigid Insulation: - Polyisocyanurate closed-cell rigid insulation (PIR) may be provided for exterior piping, equipment and ductwork for temperature up to 149 degree C (300 degree F). - 2. Install insulation, vapor barrier and jacketing per manufacturer's recommendations. Particular attention should be paid to recommendations for joint staggering, adhesive application, external hanger design, expansion/contraction joint design and spacing and vapor barrier integrity. - 3. Install insulation with all joints tightly butted (except expansion) joints in hot applications). - 4. If insulation thickness exceeds 63 mm (2.5 inches), install as a double layer system with longitudinal (lap) and butt joint staggering as recommended by manufacturer. - 5. For cold applications, vapor barrier shall be installed in a continuous manner. No staples, rivets, screws or any other attachment device capable of penetrating the vapor barrier shall be used to attach the vapor barrier or jacketing. No wire ties capable of penetrating the vapor barrier shall be used to hold the insulation in place. Banding shall be used to attach PVC or metal jacketing. - 6. Elbows, flanges and other fittings shall be insulated with the same material as is used on the pipe straights. The elbow/ fitting insulation shall be field-fabricated, mitered or factory prefabricated to the necessary size and shape to fit on the elbow/ fitting. Use of polyurethane spray-foam to fill PVC elbow jacket is prohibited on cold applications. - 7. For cold applications, the vapor barrier on elbows/fittings shall be either mastic-fabric-mastic or 2 mil thick PVDC vapor barrier adhesive tape. - 8. All PVC and metal jacketing shall be installed so as to naturally shed water. Joints shall point down and shall be sealed with either adhesive or caulking (except for periodic slip joints). - 9. Note the NFPA 90A burning characteristic requirements of 25/50 in paragraph 1.3B. Refer to paragraph 3.1 for items not to be insulated. - 10. Minimum thickness in
millimeter (inches) specified in the schedule at the end of this section. # F. Flexible Elastomeric Cellular Thermal Insulation: - Apply insulation and fabricate fittings in accordance with the manufacturer's installation instructions and finish with two coats of weather resistant finish as recommended by the insulation manufacturer. - 2. Pipe and tubing insulation: - a. Use proper size material. Do not stretch or strain insulation. - b. To avoid undue compression of insulation, provide cork stoppers or wood inserts at supports as recommended by the insulation 23 07 11 - 15 manufacturer. Insulation shields are specified under Section 23 05 11, COMMON WORK RESULTS FOR HVAC. - c. Where possible, slip insulation over the pipe or tubing prior to connection, and seal the butt joints with adhesive. Where the slip-on technique is not possible, slit the insulation and apply it to the pipe sealing the seam and joints with contact adhesive. Optional tape sealing, as recommended by the manufacturer, may be employed. Make changes from mineral fiber insulation in a straight run of pipe, not at a fitting. Seal joint with tape. - 3. Apply sheet insulation to flat or large curved surfaces with 100 percent adhesive coverage. For fittings and large pipe, apply adhesive to seams only. - 4. Pipe insulation: nominal thickness in millimeters (inches as specified in the schedule at the end of this section. - 5. Use Class S (Sheet), 20 mm (3/4 inch) thick for the following: - a. Chillers, insulate any cold chiller surfaces subject to condensation which has not been factory insulated. # 3.3 APPLICATION CHILLED WATER SPECIALTIES AND EQUIPMENT - A. Cold equipment located outdoors: 50 mm (2 inch) thick insulation, vapor barrier, faced with Aluminum Jacket - 1. Thermal inertia (buffer) tanks, strainers, air separators, control and other valves. - B. Cold equipment located indoors: 50 mm (2 inch) thick insulation, vapor barrier, faced with premolded PVC Jacket - 1. Triple duty valves, control and other valves. # 3.4 PIPE INSULATION SCHEDULE Provide insulation for piping systems as scheduled below: | 4" <n< th=""><th>2.5"</th></n<> | 2.5" | |---|----------| | 2" <n<=4"< td=""><td>2"</td></n<=4"<> | 2" | | 1" <n<=2"< td=""><td>1.5"</td></n<=2"<> | 1.5" | | n<=1" | 1.5" | | (in) | Water | | Pipe Size | Cold | | Nominal | Domestic | | | and | | | Chilled | | Insulation Thickness Millimeters (Inches) | | | | | | | | |---|--|---|------------------|----------------------|-----------------------|--|--| | | | Nominal | Pipe Size | Millimeters | (Inches) | | | | Operating
Temperature
Range/Service | Insulation
Material | Less
than &
equal
to
25 (1) | 32 - 51 (1¼ - 2) | 64 - 102
(2½ - 4) | 114 (4½)
and Above | | | | 4-16 degrees C (40-60 degrees F) (CH, CHR, GCS, GCR and RS for DX refrigeration) | Rigid Cellular
Phenolic Foam | 38 (1.5) | 38 (1.5) | 51 (2) | 64 (2.5) | | | | 4-16 degrees C (40-60 degrees F) (CH, CHR, GCS, GCR within chiller room and pipe chase and underground) | Cellular
Glass Closed-
Cell | 38 (1.5) | 38 (1.5) | 51 (2.0) | 64 (2.5) | | | | 4-16 degrees C (40-60 degrees F) (CH, CHR, GCS, GCR and RS for DX refrigeration) | Cellular
Glass Closed-
Cell | 38 (1.5) | 38 (1.5) | 51 (2) | 64 (2.5) | | | | 4-16 degrees C (40-60 degrees F) (CH, CHR, GCS, GCR and RS for DX refrigeration) | Polyiso-
cyanurate
Closed-Cell
Rigid
(Exterior
Locations
only) | 38 (1.5) | 38 (1.5) | 51 (2) | 64 (2.5) | | | | (40-60 degrees F) (CH, CHR, GCS, GCR and RS for DX refrigeration) | Flexible Elastomeric Cellular Thermal (Above ground piping only) | 38 (1.5) | 38 (1.5) | 51 (2) | 64 (2.5) | | | - - - E N D - - - # SECTION 23 09 23 DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC ### PART 1 - GENERAL ## 1.1 DESCRIPTION - A. Provide extension of direct-digital control system as indicated on the project documents, point list, interoperability tables, drawings and as described in these specifications. Include a complete and working direct-digital control system. Include all engineering, programming, controls and installation materials, installation labor, start-up, training, final project documentation and warranty. - 1. The direct-digital control system(s) shall consist of high-speed, peer-to-peer network of DDC controllers, interfacing with an existing control system server, and an existing Engineering Control Center (ECC). Remote user access is provided using a standard web browser to access the control system graphics and change adjustable setpoints with the proper password. - 2. The direct-digital control system(s) shall be native BACnet. All new workstations, controllers, devices and components shall be listed by BACnet Testing Laboratories. All new workstations, controller, devices and components shall be accessible using a Web browser interface and shall communicate exclusively using the ASHRAE Standard 135 BACnet communications protocol without the use of gateways, unless otherwise allowed by this Section of the technical specifications, specifically shown on the design drawings and specifically requested otherwise by the VA. - a. If used, gateways shall support the ASHRAE Standard 135 BACnet communications protocol. - b. If used, gateway object properties and read/write services shall be VA-approved. Interoperability schedules shall be provided and approved by VA. - 3. The work administered by this Section of the technical specifications shall include all labor, materials, special tools, equipment, enclosures, power supplies, software, software licenses, Project specific software configurations and database entries, interfaces, wiring, tubing, installation, labeling, engineering, calibration, documentation, submittals, testing, verification, training services, permits and licenses, transportation, shipping, 23 09 23 - 1 handling, administration, supervision, management, insurance, Warranty, specified services and items required for complete and fully functional Controls Systems. - 4. The control systems shall be designed such that each mechanical system shall operate under stand-alone mode. The contractor administered by this Section of the technical specifications shall provide controllers for each mechanical system. In the event of a network communication failure, or the loss of any other controller, the control system shall continue to operate independently. Failure of the ECC shall have no effect on the field controllers, including those involved with global strategies. - 5. The control system has 1 Engineering Control Center, and the access to the system is limited by operator password. - B. Some products are furnished but not installed by the contractor administered by this Section of the technical specifications. The contractor administered by this Section of the technical specifications shall formally coordinate in writing and receive from other contractors formal acknowledgements in writing prior to submission the installation of the products. These products include the following: - 1. Control valves. - 2. Flow switches. - 3. Sensor wells and sockets in piping. - C. Some products are installed but not furnished by the contractor administered by this Section of the technical specifications. The contractor administered by this Section of the technical specifications shall formally coordinate in writing and receive from other contractors formal acknowledgements in writing prior to submission the procurement of the products. These products include the following: - 1. Factory-furnished accessory thermostats and sensors furnished with unitary equipment. - D. Some products are not provided by, but are nevertheless integrated with the work executed by, the contractor administered by this Section of the technical specifications. The contractor administered by this Section of the technical specifications shall formally coordinate in writing and receive from other contractors formal acknowledgements in writing prior to submission the particulars of the products. These products include the following: 23 09 23 - 2 - 1. Chiller / Economizer controls. These controls, if not native BACnet IP, will require a BACnet IP card. - 2. Variable frequency drives. These controls, if not native BACnet, will require a BACnet Gateway. ## E. Responsibility Table: | Work/Item/System | Furnish | Install | Low
Voltage
Wiring | Line
Power | |---|----------|----------|--------------------------|---------------| | Control system low voltage and communication wiring | 23 09 23 | 23 09 23 | 23 09 23 | N/A | | LAN conduits and raceway | 23 09 23 | 23 09 23 | N/A | N/A | | Manual valves | 23 | 23 | N/A | N/A | | Automatic valves | 23 09 23 | 23 | 23 09 23 | 23 09 23 | | Pipe insertion devices and taps, flow and pressure stations. | 23 | 23 | N/A | N/A | | Thermowells | 23 09 23 | 23 | N/A | N/A | | Current Switches | 23 09 23 | 23 09 23 | 23 09 23 | N/A | | Control Relays | 23 09 23 | 23 09 23 | 23 09 23 | N/A | | Power distribution system monitoring interfaces | 23 09 23 | 23 09 23 | 23 09 23 | 26 | | Interface with chiller controls | 23 09 23 | 23 09 23 | 23 09 23 | 26 | | Chiller controls interface with control system | 23 | 23 | 23 09 23 | 26 | | All control system nodes, equipment, housings, enclosures and panels. | 23 09 23 | 23 09 23 | 23 09 23 | 26 | | Chiller/starter interlock wiring | N/A | N/A | 26 | 26 | | Chiller Flow Switches | 23 | 23 | 23 | N/A | | VFDs | 23 09 23 | 26 | 23 09 23 | 26 | | Starters, HOA switches | 23 | 23 | N/A | 26 | F. The Tomah VA Medical Center's existing direct-digital control system is manufactured by Johnson Controls, and its ECC is located at Building 40. Campus
facilities interface with the EEC through a JCI ADX (Application and Data Server) located in Building 32. Each facility has a JCI NAE (Network Automation Engine) which communicates with the ADX, the building IT Hub, and FECs (Field Equipment Controllers) located throughout the facility. The existing system's top-end communications is via BACnet MS/TP and N2. Long term planning and VA policy is to use BACnet IP. To that end the equipment furnished for this project shall be provided with BACnet IP cards which shall be directly connected to the building IT Hub (room 5144) via an Ethernet Line. The existing system's ECC and top-end controllers were installed in 2008. Long term planning and VA policy is to use BACnet IP. To that end the chiller for this project shall be provided with BACnet IP cards which shall be directly connected to the IT Hub in each building with an Ethernet Line. - G. Points will need to be named appropriate to the NAE Building Supervisory Controller, and the NAE shall be programmed so it can communicate with the chiller and output points to the ADX and ultimately the ECC. - H. Equipment controllers shall be either: - 1. Provide an expansion to an existing controller (Johnson Controls FEC) used for controlling pumps, temperatures, valves, etc. - 2. Provide a new BACnet of IP equipment controller used for controlling pumps, temperatures, valves, etc. with an Ethernet line directly connected to the IT Hub of each respective building. - 3. In both alternatives, points shall be named appropriately and consistently between buildings and the NAE programmed so it can communicate with the equipment controller and output points to the ADX and ultimately the ECC. - I. Points listed on construction drawings and required for operation, control, monitoring, and alarm of the chillers and chilled water systems shall be available with new graphics on the ECC located in building 40. Points need to be able to be read and manipulated through the ECC. - J. All trends shall be temporarily stored in the NAE and periodically moved to the ADX for long term storage. - K. Controls contractor shall provide all controls wiring and conduit for all controls including from each building mechanical room to the NAE in the building attic. - L. Controls contractor shall provide required Ethernet lines from the attic to each building Hub Room. - M. The contractor administered by this Section of the technical specifications shall provide a seamless addition to the existing system and observe the capabilities, communication network, services, spare capacity of the existing control system and its ECC prior to beginning work. - 1. Remove existing direct-digital control system, communications network and controllers serving existing water cooled chillers and chilled water pumps. Replace with new BACnet IP, network and controllers compliant with this Section of the technical specifications. Controls for chilled water system differential pressure control shall remain functioning as exists, with interface to new building chiller /economizer system controls and control panel in basement mechanical room. - N. This campus has standardized on ASHRAE Standard 135, BACnet/IP Control System supported by Johnson Controls Incorporated. This entity is referred to as the "Control System Integrator" in this Section of the technical specifications. The Control system integrator is responsible for ECC system graphics and expansion. - 1. The contractor administered by this Section of the technical specifications shall coordinate all work with the Control System Integrator. The contractor administered by this Section of the technical specifications shall integrate the ASHRAE Standard 135, BACnet/IP control network(s) with the Control System Integrator's area control through an Ethernet connection provided by the Control System Integrator. - 2. The contractor administered by this Section of the technical specifications shall provide a peer-to-peer networked, stand-alone, distributed control system. This direct digital control (DDC) system shall include microprocessor-based controllers, instrumentation, end control devices, wiring, piping, software, and related systems. This contractor is responsible for all device mounting and wiring. - 3. Responsibility Table: | Item/Task | Section
23 09 23 | Control
system | VA | |--------------------------------------|---------------------|-------------------|----| | | contactor | integrator | | | ECC programming | | X | | | Devices, controllers, control panels | X | | | | and equipment | | | | | Point addressing: all hardware and | X | | | | software points including setpoint, | | | | | calculated point, data point(analog/ | | | | | binary), and reset schedule point | | | | | Point mapping | | X | | | Network Programming | X | | | |--|---|---|---| | ECC Graphics | | X | | | Controller programming and sequences | X | | | | Integrity of LAN communications | X | | | | Electrical wiring | X | | | | Operator system training | | X | | | LAN connections to devices | X | | | | LAN connections to ECC | | X | | | IP addresses | | | X | | Overall system verification | | X | | | Controller and LAN system verification | X | | | O. The direct-digital control system shall start and stop equipment, move (position) damper actuators and valve actuators, and vary speed of equipment to execute the mission of the control system. Use electricity as the motive force for all damper and valve actuators. ## 1.2 RELATED WORK - A. Section 23 21 13, Hydronic Piping. - B. Section 23 64 00, Packaged Water Chillers. - C. Section 26 05 11, Requirements for Electrical Installations. - D. Section 26 05 19, Low-Voltage Electrical Power Conductors and Cables. - E. Section 26 05 26, Grounding and Bonding for Electrical Systems. - F. Section 26 05 33, Raceway and Boxes for Electrical Systems. - G. Section 26 27 26, Wiring Devices. - H. Section 26 29 11, Motor Starters. - I. Section 27 15 00, Communications Horizontal Cabling. # 1.3 DEFINITION - A. Algorithm: A logical procedure for solving a recurrent mathematical problem; A prescribed set of well-defined rules or processes for the solution of a problem in a finite number of steps. - B. ARCNET: ANSI/ATA 878.1 Attached Resource Computer Network. ARCNET is a deterministic LAN technology; meaning it's possible to determine the maximum delay before a device is able to transmit a message. - C. Analog: A continuously varying signal value (e.g., temperature, current, velocity etc. - D. BACnet: A Data Communication Protocol for Building Automation and Control Networks, ANSI/ASHRAE Standard 135. This communications protocol allows diverse building automation devices to communicate data over and services over a network. - E. BACnet/IP: Annex J of Standard 135. It defines and allows for using a reserved UDP socket to transmit BACnet messages over IP networks. A - BACnet/IP network is a collection of one or more IP sub-networks that share the same BACnet network number. - F. BACnet Internetwork: Two or more BACnet networks connected with routers. The two networks may sue different LAN technologies. - G. BACnet Network: One or more BACnet segments that have the same network address and are interconnected by bridges at the physical and data link layers. - H. BACnet Segment: One or more physical segments of BACnet devices on a BACnet network, connected at the physical layer by repeaters. - I. BACnet Broadcast Management Device (BBMD): A communications device which broadcasts BACnet messages to all BACnet/IP devices and other BBMDs connected to the same BACnet/IP network. - J. BACnet Interoperability Building Blocks (BIBBs): BACnet Interoperability Building Blocks (BIBBs) are collections of one or more BACnet services. These are prescribed in terms of an "A" and a "B" device. Both of these devices are nodes on a BACnet internetwork. - K. BACnet Testing Laboratories (BTL). The organization responsible for testing products for compliance with the BACnet standard, operated under the direction of BACnet International. - L. Baud: It is a signal change in a communication link. One signal change can represent one or more bits of information depending on type of transmission scheme. Simple peripheral communication is normally one bit per Baud. (e.g., Baud rate = 78,000 Baud/sec is 78,000 bits/sec, if one signal change = 1 bit). - M. Binary: A two-state system where a high signal level represents an "ON" condition and an "OFF" condition is represented by a low signal level. - N. BMP or bmp: Suffix, computerized image file, used after the period in a DOS-based computer file to show that the file is an image stored as a series of pixels. - O. Bus Topology: A network topology that physically interconnects workstations and network devices in parallel on a network segment. - P. Control Unit (CU): Generic term for any controlling unit, stand-alone, microprocessor based, digital controller residing on secondary LAN or Primary LAN, used for local controls or global controls - Q. Deadband: A temperature range over which no heating or cooling is supplied, i.e., 22-25 degrees C (72-78 degrees F), as opposed to a single point change over or overlap). 23 09 23 - 7 - R. Device: a control system component that contains a BACnet Device Object and uses BACnet to communicate with other devices. - S. Device Object: Every BACnet device requires one Device Object, whose properties represent the network visible properties of that device. Every Device Object requires a unique Object Identifier number on the BACnet internetwork. This number is often referred to as the device instance. - T. Device Profile: A specific group of services describing BACnet capabilities of a device, as defined in ASHRAE Standard 135-2008, Annex L. Standard device profiles include BACnet Operator Workstations (B-OWS), BACnet Building Controllers (B-BC), BACnet Advanced Application Controllers (B-AAC), BACnet Application Specific
Controllers (B-ASC), BACnet Smart Actuator (B-SA), and BACnet Smart Sensor (B-SS). Each device used in new construction is required to have a PICS statement listing which service and BIBBs are supported by the device. - U. Diagnostic Program: A software test program, which is used to detect and report system or peripheral malfunctions and failures. Generally, this system is performed at the initial startup of the system. - V. Direct Digital Control (DDC): Microprocessor based control including Analog/Digital conversion and program logic. A control loop or subsystem in which digital and analog information is received and processed by a microprocessor, and digital control signals are generated based on control algorithms and transmitted to field devices in order to achieve a set of predefined conditions. - W. Distributed Control System: A system in which the processing of system data is decentralized and control decisions can and are made at the subsystem level. System operational programs and information are provided to the remote subsystems and status is reported back to the Engineering Control Center. Upon the loss of communication with the Engineering Control center, the subsystems shall be capable of operating in a stand-alone mode using the last best available data. - X. Download: The electronic transfer of programs and data files from a central computer or operation workstation with secondary memory devices to remote computers in a network (distributed) system. - Y. DXF: An AutoCAD 2-D graphics file format. Many CAD systems import and export the DXF format for graphics interchange. - Z. Electrical Control: A control circuit that operates on line or low voltage and uses a mechanical means, such as a temperature sensitive bimetal or bellows, to perform control functions, such as actuating a switch or positioning a potentiometer. - AA. Electronic Control: A control circuit that operates on low voltage and uses a solid-state components to amplify input signals and perform control functions, such as operating a relay or providing an output signal to position an actuator. - BB. Engineering Control Center (ECC): The centralized control point for the intelligent control network. The ECC comprises of personal computer and connected devices to form a single workstation. - CC. Ethernet: A trademark for a system for exchanging messages between computers on a local area network using coaxial, fiber optic, or twisted-pair cables. - DD. Firmware: Firmware is software programmed into read only memory (ROM) chips. Software may not be changed without physically altering the chip. - EE. Gateway: Communication hardware connecting two or more different protocols. It translates one protocol into equivalent concepts for the other protocol. In BACnet applications, a gateway has BACnet on one side and non-BACnet (usually proprietary) protocols on the other side. - FF. GIF: Abbreviation of Graphic interchange format. - GG. Graphic Program (GP): Program used to produce images of air handler systems, fans, chillers, pumps, and building spaces. These images can be animated and/or color-coded to indicate operation of the equipment. - HH. Graphic Sequence of Operation: It is a graphical representation of the sequence of operation, showing all inputs and output logical blocks. - II. I/O Unit: The section of a digital control system through which information is received and transmitted. I/O refers to analog input (AI, digital input (DI), analog output (AO) and digital output (DO). Analog signals are continuous and represent temperature, pressure, flow rate etc, whereas digital signals convert electronic signals to digital pulses (values), represent motor status, filter status, on-off equipment etc. - JJ. I/P: a method for conveying and routing packets of information over LAN paths. User Datagram Protocol (UDP) conveys information to "sockets" without confirmation of receipt. Transmission Control Protocol (TCP) - establishes "sessions", which have end-to-end confirmation and guaranteed sequence of delivery. - KK. JPEG: A standardized image compression mechanism stands for Joint Photographic Experts Group, the original name of the committee that wrote the standard. - LL. Local Area Network (LAN): A communication bus that interconnects operator workstation and digital controllers for peer-to-peer communications, sharing resources and exchanging information. - MM. Network Repeater: A device that receives data packet from one network and rebroadcasts to another network. No routing information is added to the protocol. - NN. MS/TP: Master-slave/token-passing (ISO/IEC 8802, Part 3). It is not an acceptable LAN option for VA health-care facilities. It uses twisted-pair wiring for relatively low speed and low cost communication. - OO. Native BACnet Device: A device that uses BACnet as its primary method of communication with other BACnet devices without intermediary gateways. A system that uses native BACnet devices at all levels is a native BACnet system. - PP. Network Number: A site-specific number assigned to each network segment to identify for routing. This network number must be unique throughout the BACnet internetwork. - QQ. Object: The concept of organizing BACnet information into standard components with various associated properties. Examples include analog input objects and binary output objects. - RR. Object Identifier: An object property used to identify the object, including object type and instance. Object Identifiers must be unique within a device. - SS. Object Properties: Attributes of an object. Examples include present value and high limit properties of an analog input object. Properties are defined in ASHRAE 135; some are optional and some are required. Objects are controlled by reading from and writing to object properties. - TT. Operating system (OS): Software, which controls the execution of computer application programs. - UU. PCX: File type for an image file. When photographs are scanned onto a personal computer they can be saved as PCX files and viewed or changed by a special application program as Photo Shop. - VV. Peripheral: Different components that make the control system function as one unit. Peripherals include monitor, printer, and I/O unit. - WW. Peer-to-Peer: A networking architecture that treats all network stations as equal partners- any device can initiate and respond to communication with other devices. - XX. PICS: Protocol Implementation Conformance Statement, describing the BACnet capabilities of a device. All BACnet devices have published PICS - YY. PID: Proportional, integral, and derivative control, used to control modulating equipment to maintain a setpoint. - ZZ. Repeater: A network component that connects two or more physical segments at the physical layer. - AAA. Router: a component that joins together two or more networks using different LAN technologies. Examples include joining a BACnet Ethernet LAN to a BACnet MS/TP LAN. - BBB. Sensors: devices measuring state points or flows, which are then transmitted back to the DDC system. - CCC. Thermostats: devices measuring temperatures, which are used in control of standalone or unitary systems and equipment not attached to the DDC system. ## 1.4 QUALITY ASSURANCE #### A. Criteria: - 1. Single Source Responsibility of subcontractor: The Contractor shall obtain hardware and software supplied under this Section and delegate the responsibility to a single source controls installation subcontractor. The controls subcontractor shall be responsible for the complete design, installation, and commissioning of the system. The controls subcontractor shall be in the business of design, installation and service of such building automation control systems similar in size and complexity. - 2. Equipment and Materials: Equipment and materials shall be cataloged products of manufacturers regularly engaged in production and installation of HVAC control systems. Products shall be manufacturer's latest standard design and have been tested and proven in actual use. - 3. The controls subcontractor shall provide a list of no less than five similar projects which have building control systems as specified in this Section. These projects must be on-line and functional such that the Department of Veterans Affairs (VA) representative would observe the control systems in full operation. - 4. The controls subcontractor shall have in-place facility within 50 miles with technical staff, spare parts inventory for the next five (5) years, and necessary test and diagnostic equipment to support the control systems. - 5. The controls subcontractor shall have minimum of three years experience in design and installation of building automation systems similar in performance to those specified in this Section. Provide evidence of experience by submitting resumes of the project manager, the local branch manager, project engineer, the application engineering staff, and the electronic technicians who would be involved with the supervision, the engineering, and the installation of the control systems. Training and experience of these personnel shall not be less than three years. Failure to disclose this information will be a ground for disqualification of the supplier. - 6. Provide a competent and experienced Project Manager employed by the Controls Contractor. The Project Manager shall be supported as necessary by other Contractor employees in order to provide professional engineering, technical and management service for the work. The Project Manager shall attend scheduled Project Meetings as required and shall be empowered to make technical, scheduling and related decisions on behalf of the Controls Contractor. # B. Codes and Standards: - 1. All work shall conform to the applicable Codes and Standards. - 2. Electronic equipment shall conform to the requirements of FCC Regulation, Part 15, Governing Radio Frequency Electromagnetic Interference, and be so labeled. ### 1.5 PERFORMANCE - A. The
system shall conform to the following: - Graphic Display: The system shall display up to four (4) graphics on a single screen with a minimum of twenty (20) dynamic points per graphic. All current data shall be displayed within ten (10) seconds of the request. - 2. Graphic Refresh: The system shall update all dynamic points with current data within eight (8) seconds. Data refresh shall be automatic, without operator intervention. - 3. Object Command: The maximum time between the command of a binary object by the operator and the reaction by the device shall be two(2) seconds. Analog objects shall start to adjust within two (2) seconds. - 4. Object Scan: All changes of state and change of analog values shall be transmitted over the high-speed network such that any data used or displayed at a controller or work-station will be current, within the prior six (6) seconds. - 5. Alarm Response Time: The maximum time from when an object goes into alarm to when it is annunciated at the workstation shall not exceed (10) seconds. - 6. Program Execution Frequency: Custom and standard applications shall be capable of running as often as once every (5) seconds. The Contractor shall be responsible for selecting execution times consistent with the mechanical process under control. - 7. Multiple Alarm Annunciations: All workstations on the network shall receive alarms within five (5) seconds of each other. - 8. Performance: Programmable Controllers shall be able to execute DDC PID control loops at a selectable frequency from at least once every one (1) second. The controller shall scan and update the process value and output generated by this calculation at this same frequency. - 9. Reporting Accuracy: Listed below are minimum acceptable reporting end-to-end accuracies for all values reported by the specified system: | Measured Variable | Reported Accuracy | |-------------------------|---------------------------| | Outdoor air temperature | ±1.0°C [±2°F] | | Water temperature | ±0.5°C [±1°F] | | Water flow | ±1% of reading | | Water pressure | ±2% of full scale *Note 1 | Note 1: for both absolute and differential pressure 10. Control stability and accuracy: Control sequences shall maintain measured variable at setpoint within the following tolerances: | Controlled Variable | Control Accuracy | Range of Medium | |---------------------|--------------------|---------------------| | Fluid Pressure | ±10 kPa (±1.5 psi) | 0-1 MPa (1-150 psi) | 11. Extent of direct digital control: control design shall allow for at least the points indicated on the points lists on the drawings. ### 1.6 WARRANTY - A. Labor and materials for control systems shall be warranted for a period as specified under Warranty in FAR clause 52.246-21. - B. Control system failures during the warranty period shall be adjusted, repaired, or replaced at no cost or reduction in service to the owner. The system includes all computer equipment, transmission equipment, and all sensors and control devices. - C. Controls and Instrumentation subcontractor shall be responsible for temporary operations and maintenance of the control systems during the construction period until final training of facility operators and acceptance of the project by VA. #### 1.7 SUBMITTALS - A. Submit shop drawings in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. - B. Manufacturer's literature and data for all components including the following: - 1. A wiring diagram for each type of input device and output device including DDC controllers, modems, repeaters, etc. Diagram shall show how the device is wired and powered, showing typical connections at the digital controllers and each power supply, as well as the device itself. Show for all field connected devices, including but not limited to, control relays, motor starters, electric or electronic actuators, and temperature, pressure, and flow sensors and transmitters. - 2. A diagram of each terminal strip, including digital controller terminal strips, terminal strip location, termination numbers and the associated point names. - 3. Control valves schedule, including the size and pressure drop. - 4. Catalog cut sheets of all equipment used. This includes, but is not limited to software (by manufacturer and by third parties), DDC controllers, panels, peripherals, airflow measuring stations and associated components, and auxiliary control devices such as sensors, actuators, and control dampers. When manufacturer's cut sheets apply to a product series rather than a specific product, the data specifically applicable to the project shall be highlighted. Each submitted piece of literature and drawings should clearly reference the specification and/or drawings that it supposed to represent. - 5. Sequence of operations for each HVAC system and the associated control diagrams. Equipment and control labels shall correspond to those shown on the drawings. - 6. Color prints of proposed graphics with a list of points for display. - 7. Furnish a BACnet Protocol Implementation Conformance Statement (PICS) for each BACnet-compliant device. - 8. Schematic wiring diagrams for all control, communication and power wiring. Provide a schematic drawing of the central system installation. Label all cables and ports with computer manufacturers' model numbers and functions. Show all interface wiring to the control system. - 9. An instrumentation list for each controlled system. Each element of the controlled system shall be listed in table format. The table shall show element name, type of device, manufacturer, model number, and product data sheet number. - 10. Riser diagrams of wiring between central control unit and all control panels. - 11. Scaled plan drawings showing routing of LAN and locations of control panels, controllers, routers, gateways, ECC, and larger controlled devices. - 12. Construction details for all installed conduit, cabling, raceway, cabinets, and similar. Construction details of all penetrations and their protection. - 13. Quantities of submitted items may be reviewed but are the responsibility of the contractor administered by this Section of the technical specifications. - C. Product Certificates: Compliance with Article, QUALITY ASSURANCE. - D. Licenses: Provide licenses for all software residing on and used by the Controls Systems and transfer these licenses to the Owner prior to completion. ## E. As Built Control Drawings: - 1. Furnish three (3) copies of as-built drawings for each control system. The documents shall be submitted for approval prior to final completion. - 2. Furnish one (1) CD-ROM in CAD DWG and/or .DXF format for the drawings noted in subparagraphs above. - 3. Furnish a laminated set of drawings (legible 11×17) including control diagrams, sequence of operations, and point list to be left in building 452 Mechanical Room. ## F. Operation and Maintenance (O/M) Manuals): - 1. Submit in accordance with Article, INSTRUCTIONS, in Specification Section 01 00 00, GENERAL REQUIREMENTS. - 2. Include the following documentation: - a. General description and specifications for all components, including logging on/off, alarm handling, producing trend reports, overriding computer control, and changing set points and other variables. - b. Detailed illustrations of all the control systems specified for ease of maintenance and repair/replacement procedures, and complete calibration procedures. - c. One copy of the final version of all software provided including operating systems, programming language, operator workstation software, and graphics software. - d. Complete troubleshooting procedures and guidelines for all systems. - e. Complete operating instructions for all systems. - f. Recommended preventive maintenance procedures for all system components including a schedule of tasks for inspection, cleaning and calibration. Provide a list of recommended spare parts needed to minimize downtime. - g. Training Manuals: Submit the course outline and training material to the Owner for approval three (3) weeks prior to the training to VA facility personnel. These persons will be responsible for maintaining and the operation of the control systems, including programming. The Owner reserves the right to modify any or all of the course outline and training material. - h. Licenses, guaranty, and other pertaining documents for all equipment and systems. - G. Submit Performance Report to Resident Engineer prior to final inspection. ### 1.8 INSTRUCTIONS - A. Instructions to VA operations personnel: Perform in accordance with Article, INSTRUCTIONS, in Specification Section 01 00 00, GENERAL REQUIREMENTS, and as noted below. - 1. First Phase: Formal instructions to the VA facilities personnel for a total of 8 hours, given in multiple training sessions (each no longer than four hours in length), conducted sometime between the completed installation and prior to the performance test period of the control system, at a time mutually agreeable to the Contractor and the VA. - The O/M Manuals shall contain approved submittals as outlined in Article 1.7, SUBMITTALS. The Controls subcontractor will review the manual contents with VA facilities personnel during second phase of training. - 3. Training shall be given by direct employees of the controls system subcontractor. - 4. An outline of training along with a copy of handout to be used during training shall be provided to COR 2 weeks ahead of scheduled training and in addition to the training outline shall include at least the following: product literature, control diagrams, screen shots, sequence of operations, and point list. ## 1.9 PROJECT CONDITIONS (ENVIRONMENTAL CONDITIONS OF OPERATION) - A. Peripheral devices and system support equipment shall be designed to operate in ambient condition of 20 to 35° C (65 to 90° F) at a relative humidity of 20 to 80% non-condensing. - B. The CUs used outdoors shall be mounted in NEMA 4 waterproof enclosures, and shall
be rated for operation at -40 to 65° C (-40 to 150° F). - C. All electronic equipment shall operate properly with power fluctuations of plus 10 percent to minus 15 percent of nominal supply voltage. - D. Sensors and controlling devices shall be designed to operate in the environment, which they are sensing or controlling. #### 1.10 APPLICABLE PUBLICATIONS - A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. - B. American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE): Standard 135-10.....BACNET Building Automation and Control Networks C. American Society of Mechanical Engineers (ASME): B16.18-01......Cast Copper Alloy Solder Joint Pressure Fittings. B16.22-01.....Wrought Copper and Copper Alloy Solder Joint Pressure Fittings. D. American Society of Testing Materials (ASTM): Plastic Tubing E. Federal Communication Commission (FCC): Rules and Regulations Title 47 Chapter 1-2001 Part 15: Radio Frequency Devices. F. Institute of Electrical and Electronic Engineers (IEEE): G. National Fire Protection Association (NFPA): 70-11......National Electric Code 90A-09.....Standard for Installation of Air-Conditioning and Ventilation Systems H. Underwriter Laboratories Inc (UL): ### PART 2 - PRODUCTS ### 2.1 MATERIALS A. Use new products that the manufacturer is currently manufacturing and that have been installed in a minimum of 25 installations. Spare parts shall be available for at least five years after completion of this contract. # 2.2 CONTROLS SYSTEM ARCHITECTURE #### A. General - 1. The Controls Systems shall consist of multiple Nodes and associated equipment connected by industry standard digital and communication network arrangements. - 2. The ECC, building controllers and principal communications network equipment exists. - 3. Network modifications shall, at minimum, comprise, as necessary, the following: - a. BACnet-compliant routers, bridges, switches, hubs, modems, gateways, interfaces and similar communication equipment. - b. Active processing BACnet-compliant building controllers connected to other BACNet-compliant controllers together with their power supplies and associated equipment. - c. Addressable elements, sensors, transducers and end devices. - d. Third-party equipment interfaces and gateways as described and required by the Contract Documents. - e. Other components required for a complete and working Control Systems as specified. - B. The Specifications for the individual elements and component subsystems shall be minimum requirements and shall be augmented as necessary by the Contractor to achieve both compliance with all applicable codes, standards and to meet all requirements of the Contract Documents. ## C. Network Architecture - 1. The Controls communication network shall utilize BACnet communications protocol operating over a standard Ethernet LAN and operate at a minimum speed of 100 Mb/sec. - The networks shall utilize only copper and optical fiber communication media as appropriate and shall comply with applicable codes, ordinances and regulations. 3. All necessary telephone lines, ISDN lines and internet Service Provider services and connections will be provided by the VA. # D. Third Party Interfaces: - 1. The contractor administered by this Section of the technical specifications shall include necessary hardware, equipment, software and programming to allow data communications between the controls systems and building systems supplied by other trades. - 2. Other manufacturers and contractors supplying other associated systems and equipment shall provide their necessary hardware, software and start-up at their cost and shall cooperate fully with the contractor administered by this Section of the technical specifications in a timely manner and at their cost to ensure complete functional integration. ## 2.3 COMMUNICATION - A. Control products, communication media, connectors, repeaters, hubs, and routers shall comprise a BACnet internetwork. Controller and operator interface communication shall conform to ANSI/ASHRAE Standard 135-2008, BACnet. - The Data link / physical layer protocol (for communication) acceptable to the VA throughout its facilities is Ethernet (ISO 8802-3) and BACnet/IP. - 2. The MS/TP data link / physical layer protocol is not acceptable to the VA in any new BACnet network or sub-network in its healthcare or lab facilities. - B. Each controller shall have a communication port for connection to an operator interface. - C. Internetwork operator interface and value passing shall be transparent to internetwork architecture. - 1. An operator interface connected to a controller shall allow the operator to interface with each internetwork controller as if directly connected. Controller information such as data, status, reports, system software, and custom programs shall be viewable and editable from each internetwork controller. - 2. Inputs, outputs, and control variables used to integrate control strategies across multiple controllers shall be readable by each controller on the internetwork. Program and test all crosscontroller links required to execute specified control system operation. An authorized operator shall be able to edit crosscontroller links by typing a standard object address. D. Controllers with real-time clocks shall use the BACnet Time Synchronization service. The system shall automatically synchronize system clocks daily from an operator-designated device via the internetwork. The system shall automatically adjust for daylight savings and standard time as applicable. ## 2.4 ENGINEERING CONTROL CENTER (ECC) - A. The ECC exists, located in building 40, and resides on a high-speed network. - B. ECC and controllers communicate using BACnet protocol. ECC and control network backbone communicate using ISO 8802-3 (Ethernet) Data Link/Physical layer protocol and BACnet/IP addressing as specified in ASHRAE/ANSI 135-2008, BACnet Annex J. - C. Hardware: ECC conforms to the BACnet Advanced Workstation (B-AWS) Profile and shall be BTL-Listed as a B-AWS device. Contractor to verify existing hardware. - 1. RS-232 ASCII Interface - a. ASCII interfaces do and shall allow RS-232 connections to be made between a meter or circuit monitor operating as the host PC and any equipment that will accept RS-232 ASCII command strings, such as local display panels, dial-up modems, and alarm transmitters. # D. ECC Software: - 1. ECC software exists, contractor to verify. - 2. System Graphics exist, modify as required for project. The operator workstation software is be graphically oriented. The system allows display of up to 10 graphic screens at once for comparison and monitoring of system status. An operator with the proper password level shall be able to add, delete, or change dynamic objects on a graphic. Dynamic objects shall include analog and binary values, dynamic text, static text, and animation files. Graphics shall have the ability to show animation by shifting image files based on the status of the object. - 3. Custom Graphics. Custom graphic files shall be created with the use of a graphics generation package furnished with the system. - 4. Graphics Library. Utilize existing library of standard HVAC equipment graphics such as chillers, boilers, air handlers, terminals, fan coils, and unit ventilators. This library also shall include standard symbols for other equipment including fans, pumps, coils, valves, piping, dampers, and ductwork. The library shall be furnished in a file format compatible with the graphics generation package program. - 5. Chiller and chilled water system graphics shall display on the ECC in building 40. - 6. The Controls Systems Operator Interfaces shall be user friendly, readily understood and shall make maximum use of colors, graphics, icons, embedded images, animation, text based information and data visualization techniques to enhance and simplify the use and understanding of the displays by authorized users at the ECC. The operating system shall be Windows XP or better, and shall support the third party software.7. User access shall be protected by a flexible and Owner re-definable software-based password access protection. Password protection shall be multi-level and partition able to accommodate the varied access requirements of the different user groups to which individual users may be assigned. Provide the means to define unique access privileges for each individual authorized user. Provide the means to on-line manage password access control under the control of a project specific Master Password. Provide an audit trail of all user activity on the Controls Systems including all actions and changes. - 7. The system shall be completely field-programmable from the common operator's keyboard thus allowing hard disk storage of all data automatically. All programs for the CUs shall be able to be downloaded from the hard disk. The software shall provide the following functionality as a minimum: - a. Point database editing, storage and downloading of controller databases. - b. Scheduling and override of building environmental control systems. - c. Collection and analysis of historical data. - d. Alarm reporting, routing, messaging, and acknowledgement. - e. Definition and construction of dynamic color graphic displays. - f. Real-time graphical viewing and control of environment. - g. Scheduling trend reports. - h. Program editing. - i. Operating activity log and system security. - j. Transfer data to third party software. - 8. Provide functionality such that using the least amount of steps to initiate the desired event may perform any of the following simultaneously: - a. Dynamic color graphics and graphic control. - b. Alarm management. - c. Event scheduling. - d. Dynamic trend definition and presentation. - e. Program and database editing. - f. Each operator shall be required to log on to
the system with a user name and password to view, edit or delete the data. System security shall be selectable for each operator, and the password shall be able to restrict the operator's access for viewing and changing the system programs. Each operator shall automatically be logged off the system if no keyboard or mouse activity is detected for a selected time. ## 9. Graphic Displays: - a. The workstation shall allow the operator to access various system schematics and floor plans via a graphical penetration scheme, menu selection, or text based commands. Graphic software shall permit the importing of AutoCAD or scanned pictures in the industry standard format (such as PCX, BMP, GIF, and JPEG) for use in the system. - b. System Graphics shall be project specific and schematically correct for each system. (ie: coils, fans, dampers located per equipment supplied with project.) Standard system graphics that do not match equipment or system configurations are not acceptable. Operator shall have capability to manually operate the entire system from each graphic screen at the ECC. Each system graphic shall include a button/tab to a display of the applicable sequence of operation. - c. Dynamic temperature values, humidity values, flow rates, and status indication shall be shown in their locations and shall automatically update to represent current conditions without operator intervention and without pre-defined screen refresh values. - d. Color shall be used to indicate status and change in status of the equipment. The state colors shall be user definable. - e. A clipart library of HVAC equipment, such as chillers, boilers, air handling units, fans, terminal units, pumps, coils, standard ductwork, piping, valves and laboratory symbols shall be provided in the system. The operator shall have the ability to add custom symbols to the clipart library. - f. A dynamic display of the site-specific architecture showing status of the controllers, the ECC and network shall be provided. - g. The windowing environment of the workstation shall allow the user to simultaneously view several applications at a time to analyze total building operation or to allow the display of graphic associated with an alarm to be viewed without interrupting work in progress. The graphic system software shall also have the capability to split screen, half portion of the screen with graphical representation and the other half with sequence of operation of the same HVAC system. - 10. Trend reports shall be generated on demand or pre-defined schedule and directed to monitor display, printers or disk. As a minimum, the system shall allow the operator to easily obtain the following types of reports: - a. A general list of all selected points in the network. - b. List of all points in the alarm. - c. List of all points in the override status. - d. List of all disabled points. - e. List of all points currently locked out. - f. List of user accounts and password access levels. - g. List of weekly schedules. - h. List of holiday programming. - i. List of limits and dead bands. - j. Custom reports. - k. System diagnostic reports, including, list of digital controllers on the network. - 1. List of programs. - 11. ASHRAE Standard 147 Report: Provide a daily report that shows the operating condition of each chiller as recommended by ASHRAE Standard 147. At a minimum, this report shall include: - a. Chilled water (or other secondary coolant) inlet and outlet temperature - b. Chilled water (or other secondary coolant) flow - c. Chilled water (or other secondary coolant) inlet and outlet pressures - d. Evaporator refrigerant pressure and temperature - e. Condenser refrigerant pressure and liquid temperature - f. Condenser air inlet and outlet temperatures - g. Number of condenser fans operating - h. Refrigerant levels - i. Oil pressure and temperature - j. Oil level - k. Compressor refrigerant discharge temperature - 1. Compressor refrigerant suction temperature - m. Addition of refrigerant - n. Addition of oil - o. Vibration levels or observation that vibration is not excessive - p. Motor amperes per phase - q. Motor volts per phase - s. Purge exhaust time or discharge count - t. Ambient temperature (dry-bulb and wet-bulb) - u. Date and time logged - 12. Scheduling and Override: - a. Provide override access through menu selection from the graphical interface and through a function key. - b. Provide a calendar type format for time-of-day scheduling and overrides of building control systems. Schedules reside in the ECC. The digital controllers shall ensure equipment time scheduling when the ECC is off-line. The ECC shall not be required to execute time scheduling. Provide the following spreadsheet graphics as a minimum: - 1) Weekly schedules. - 2) Scheduling up to 365 days in advance. - 3) Scheduled reports to print at workstation. ## 13. Collection and Analysis of Historical Data: - a. Provide trending capabilities that will allow the operator to monitor and store records of system activity over an extended period of time. Points may be trended automatically on time based intervals or change of value, both of which shall be user definable. The trend interval could be five (5) minutes to 120 hours. Trend data may be stored on hard disk for future diagnostic and reporting. Additionally trend data may be archived to network drives or removable disk media for off-site retrieval. - b. Reports may be customized to include individual points or predefined groups of at least six points. Provide additional functionality to allow pre-defined groups of up to 250 trended points to be easily accessible by other industry standard word processing and spreadsheet packages. The reports shall be time and date stamped and shall contain a report title and the name of the facility. - c. System shall have the set up to generate spreadsheet reports to track energy usage and cost based on weekly or monthly interval, equipment run times, equipment efficiency, and/or building environmental conditions. - d. Provide additional functionality that will allow the operator to view real time trend data on trend graph displays. A minimum of 20 points may be graphed regardless of whether they have been predefined for trending. In addition, the user may pause the graph and take snapshots of the screens to be stored on the workstation disk for future reference and trend analysis. Exact point values may be viewed and the graph may be printed. Operator shall be able to command points directly on the trend plot by double clicking on the point. ### 14. Alarm Management: - a. Alarm routing shall allow the operator to send alarm notification to selected printers or operator workstation based on time of day, alarm severity, or point type. - b. Alarm notification shall be provided via two alarm icons, to distinguish between routine, maintenance type alarms and critical alarms. The critical alarms shall display on the screen at the - time of its occurrence, while others shall display by clicking on their icon. - c. Alarm display shall list the alarms with highest priority at the top of the display. The alarm display shall provide selector buttons for display of the associated point graphic and message in English language. The operator shall be able to sort out the alarms. - d. Alarm messages shall be customized for each point to display detailed instructions to the operator regarding actions to take in the event of an alarm. - e. An operator with proper security level access may acknowledge and clear the alarm. All that have not been cleared shall be archived at workstation disk. ### 2.5 NETWORK AND DEVICE NAMING CONVENTION ### A. Network Numbers - 1. BACnet network numbers shall be based on a "facility code, network" concept. The "facility code" is the VAMC's or VA campus' assigned numeric value assigned to a specific facility or building. The "network" typically corresponds to a "floor" or other logical configuration within the building. BACnet allows 65535 network numbers per BACnet internet work. - 2. The network numbers are thus formed as follows: "Net #" = "FFFNN" where: - a. FFF = Facility code (see below) - b. NN = 00-99 This allows up to 100 networks per facility or building ### B. Device Instances - 1. BACnet allows 4194305 unique device instances per BACnet internet work. Using Agency's unique device instances are formed as follows: "Dev #" = "FFFNNDD" where - a. FFF and N are as above and - b. DD = 00-99, this allows up to 100 devices per network. - 2. Note Special cases, where the network architecture of limiting device numbering to DD causes excessive subnet works. The device number can be expanded to DDD and the network number N can become a single digit. In NO case shall the network number N and the device number D exceed 4 digits. VA Tomah Medical Center, WI Replace Chiller-Building 403 100% Bid Documents - 3. Facility code assignments: - 4. 000-400 Building/facility number - 5. Note that some facilities have a facility code with an alphabetic suffix to denote wings, related structures, etc. The suffix will be ignored. Network numbers for facility codes above 400 will be assigned in the range 000-399. #### C. Device Names 1. Name the control devices based on facility name, location within a facility, the system or systems that the device monitors and/or controls, or the area served. The intent of the device naming is to be easily recognized. Names can be up to 254 characters in length, without embedded spaces. Provide the shortest descriptive, but unambiguous, name. For example, in building #123 prefix the number with a "B" followed by the building number, if there is only one chilled water pump "CHWP-1", a valid name would be "B123.CHWP. 1.STARTSTOP". If there are two pumps designated "CHWP-1", one in a basement mechanical room (Room 0001) and one in a penthouse mechanical room (Room PH01), the names could be "B123.R0001.CHWP.1. STARTSTOP" or "B123.RPH01.CHWP.1.STARTSTOP". In the case of
unitary controllers, for example a VAV box controller, a name might be "B123.R101.VAV". These names should be used for the value of the "Object_Name" property of the BACnet Device objects of the controllers involved so that the BACnet name and the EMCS name are the same. ## 2.6 BACNET DEVICES - A. All BACnet Devices controllers, gateways, routers, actuators and sensors shall conform to BACnet Device Profiles and shall be BACnet Testing Laboratories (BTL) -Listed as conforming to those Device Profiles. Protocol Implementation Conformance Statements (PICSs), describing the BACnet capabilities of the Devices shall be published and available of the Devices through links in the BTL website. - 1. BACnet Building Controllers, historically referred to as NACs, shall conform to the BACnet B-BC Device Profile, and shall be BTL-Listed as conforming to the B-BC Device Profile. The Device's PICS shall be submitted. - 2. BACnet Advanced Application Controllers shall conform to the BACnet B-AAC Device Profile, and shall be BTL-Listed as conforming to the B-AAC Device Profile. The Device's PICS shall be submitted. - 3. BACnet Application Specific Controllers shall conform to the BACnet B-ASC Device Profile, and shall be BTL-Listed as conforming to the B-ASC Device Profile. The Device's PICS shall be submitted. - 4. BACnet Smart Actuators shall conform to the BACnet B-SA Device Profile, and shall be BTL-Listed as conforming to the B-SA Device Profile. The Device's PICS shall be submitted. - 5. BACnet Smart Sensors shall conform to the BACnet B-SS Device Profile, and shall be BTL-Listed as conforming to the B-SS Device Profile. The Device's PICS shall be submitted. - 6. BACnet routers and gateways shall conform to the BACnet B-OTH Device Profile, and shall be BTL-Listed as conforming to the B-OTH Device Profile. The Device's PICS shall be submitted. ### 2.7 CONTROLLERS - A. General. Provide an adequate number of BTL-Listed B-BC building controllers and an adequate number of BTL-Listed B-AAC advanced application controllers to achieve the performance specified in the Part 1 Article on "System Performance." Each of these controllers shall meet the following requirements. - 1. The controller shall have sufficient memory to support its operating system, database, and programming requirements. - 2. The building controller shall share data with the ECC and the other networked building controllers. The advanced application controller shall share data with its building controller and the other networked advanced application controllers. - 3. The operating system of the controller shall manage the input and output communication signals to allow distributed controllers to share real and virtual object information and allow for central monitoring and alarms. - 4. Controllers that perform scheduling shall have a real-time clock. - 5. The controller shall continually check the status of its processor and memory circuits. If an abnormal operation is detected, the controller shall: - a. assume a predetermined failure mode, and - b. generate an alarm notification. - 6. The controller shall communicate with other BACnet devices on the internetwork using the BACnet Read (Execute and Initiate) and Write (Execute and Initiate) Property services. - 7. Communication. - a. Each controller shall reside on a BACnet network using the ISO 8802-3 (Ethernet) Data Link/Physical layer protocol for its communications. Each building controller also shall perform BACnet routing if connected to a network of custom application and application specific controllers. - b. The controller shall provide a service communication port using BACnet Data Link/Physical layer protocol for connection to a portable operator's terminal. - 8. Keypad. A local keypad and display shall be provided for each controller. The keypad shall be provided for interrogating and editing data. Provide a system security password shall be available to prevent unauthorized use of the keypad and display. - 9. Serviceability. Provide diagnostic LEDs for power, communication, and processor. All wiring connections shall be made to field-removable, modular terminal strips or to a termination card connected by a ribbon cable. - 10. Memory. The controller shall maintain all BIOS and programming information in the event of a power loss for at least 72 hours. - 11. The controller shall be able to operate at 90% to 110% of nominal voltage rating and shall perform an orderly shutdown below 80% nominal voltage. Controller operation shall be protected against electrical noise of 5 to 120 Hz and from keyed radios up to 5 W at 1 m (3 ft). - B. Provide BTL-Listed B-ASC application specific controllers for each piece of equipment for which they are constructed. Application specific controllers shall communicate with other BACnet devices on the internetwork using the BACnet Read (Execute) Property service. - Each B-ASC shall be capable of stand-alone operation and shall continue to provide control functions without being connected to the network - 2. Each B-ASC will contain sufficient I/O capacity to control the target system. - 3. Communication. - a. Each controller shall reside on a BACnet network using the ISO 8802-3 (Ethernet) Data Link/Physical layer protocol for its communications. Each building controller also shall perform BACnet routing if connected to a network of custom application and application specific controllers. - b. Each controller shall have a BACnet Data Link/Physical layer compatible connection for a laptop computer or a portable operator's tool. - 4. Serviceability. Provide diagnostic LEDs for power, communication, and processor. All wiring connections shall be made to field-removable, modular terminal strips or to a termination card connected by a ribbon cable. - 5. Memory. The application specific controller shall use nonvolatile memory and maintain all BIOS and programming information in the event of a power loss. - 6. Immunity to power and noise. Controllers shall be able to operate at 90% to 110% of nominal voltage rating and shall perform an orderly shutdown below 80%. Operation shall be protected against electrical noise of 5-120 Hz and from keyed radios up to 5 W at 1 m (3 ft). - 7. Transformer. Power supply for the ASC must be rated at a minimum of 125% of ASC power consumption and shall be of the fused or current limiting type. ## C. Direct Digital Controller Software - The software programs specified in this section shall be commercially available, concurrent, multi-tasking operating system and support the use of software application that operates under DOS or Microsoft Windows. - 2. All points shall be identified by up to 30-character point name and 16-character point descriptor. The same names shall be used at the ECC. - 3. All control functions shall execute within the stand-alone control units via DDC algorithms. The VA shall be able to customize control strategies and sequences of operations defining the appropriate control loop algorithms and choosing the optimum loop parameters. - 4. All controllers shall be capable of being programmed to utilize stored default values for assured fail-safe operation of critical processes. Default values shall be invoked upon sensor failure or, if the primary value is normally provided by the central or another CU, or by loss of bus communication. Individual application software packages shall be structured to assume a fail-safe condition upon loss of input sensors. Loss of an input sensor shall result in output of a sensor-failed message at the ECC. Each ACU and RCU shall have capability for local readouts of all functions. The UCUs shall be read remotely. - 5. All DDC control loops shall be able to utilize any of the following control modes: - a. Two position (on-off, slow-fast) control. - b. Proportional control. - c. Proportional plus integral (PI) control. - d. Proportional plus integral plus derivative (PID) control. All PID programs shall automatically invoke integral wind up prevention routines whenever the controlled unit is off, under manual control of an automation system or time initiated program. - e. Automatic tuning of control loops. - 6. System Security: Operator access shall be secured using individual password and operator's name. Passwords shall restrict the operator to the level of object, applications, and system functions assigned to him. A minimum of six (6) levels of security for operator access shall be provided. - 7. Application Software: The controllers shall provide the following programs as a minimum for the purpose of optimizing energy consumption while maintaining comfortable environment for occupants. All application software shall reside and run in the system digital controllers. Editing of the application shall occur at the ECC or via a portable operator's terminal, when it is necessary, to access directly the programmable unit. - a. Event Scheduling: Provide a comprehensive menu driven program to automatically start and stop designated points or a group of points according to a stored time. This program shall provide the capability to individually command a point or group of points. When points are assigned to one common load group it shall be possible to assign variable time advances/delays between each successive start or stop within that group. Scheduling shall be calendar based and advance schedules may be defined up to one year in advance. Advance schedule shall override the day-to-day schedule. The operator shall be able to define the following information: - 1) Time, day. - 2) Commands such as on, off, auto. - 3) Time delays between successive commands. - 4) Manual overriding of each schedule. - 5) Allow operator intervention. - b. Alarm Reporting: The operator shall be able to determine the action to be taken in the event of an alarm. Alarms shall be routed to the ECC based on time and events. An alarm shall be able to start programs, login the event, print and display the messages. The system
shall allow the operator to prioritize the alarms to minimize nuisance reporting and to speed operator's response to critical alarms. A minimum of six (6) priority levels of alarms shall be provided for each point. - c. Maintenance Management (PM): The program shall monitor equipment status and generate maintenance messages based upon the operators defined equipment run time, starts, and/or calendar date limits. A preventative maintenance alarm shall be printed indicating maintenance requirements based on pre-defined run time. Each preventive message shall include point description, limit criteria and preventative maintenance instruction assigned to that limit. A minimum of 480-character PM shall be provided for each component of units such as air handling units. - d. Chilled water Plant Operation: The program shall provide sequence of operation as described on the drawings and include the following as a minimum: - 1) Automatic start/stop of chillers and auxiliaries in accordance with the sequence of operation shown on the drawings, while incorporating requirements and restraints, such as starting frequency of the equipment imposed by equipment manufacturers. - 2) Primary chilled water pumps and controls. - 3) Generate chilled water plant load profiles for different seasons for use in forecasting efficient operating schedule. - 4) The chilled water plant program shall display the following as a minimum: - a) Chilled flow rate. - b) Chilled water supply and return temperature. - c) Outdoor air dry bulb temperature. - d) Outdoor air wet bulb temperature. - e) Ton-hours of chilled water per day/month/year. - f) On-off status for each chiller. - g) Chilled water flow rate. - h) Chilled water supply and return temperature. - i) Operating set points-temperature and pressure. - j) Kilowatts and power factor. - k) Date and time. - 1) Operating or alarm status. - m) Operating hours continuously totaled for each 10% of chiller output. ## 2.8 SENSORS (AIR, WATER AND STEAM) - A. Sensors' measurements shall be read back to the DDC system, and shall be visible by the ECC. - B. Temperature Sensors shall be electronic, vibration and corrosion resistant for immersion mounting. Provide all remote sensors as required for the systems. - 1. Temperature Sensors: Resistance Temperature Device (RTD) with an integral transmitter. - a. Immersion sensors shall be provided with a separable well made of stainless steel, bronze or monel material. Pressure rating of well is to be consistent with the system pressure in which it is to be installed. - b. Outdoor air temperature sensors shall have watertight inlet fittings and be shielded from direct sunlight. - c. Wire: Twisted, shielded-pair cable. - d. Output Signal: 4-20 ma. ## C. Flow switches: - 1. Shall be provided with chiller, by chiller manufacturer, flow status to be displayed through ECC. - 2. Shall be either paddle or differential pressure type. - a. Paddle-type switches (liquid service only) shall be UL Listed, SPDT snap-acting, adjustable sensitivity with NEMA 4 enclosure. - b. Differential pressure type switches (air or water service) shall be UL listed, SPDT snap acting, NEMA 4 enclosure, with scale range and differential suitable for specified application. - D. Current Switches: Current operated switches shall be self powered, solid state with adjustable trip current as well as status, power, and relay command status LED indication. The switches shall be selected to match the current of the application and output requirements of the DDC systems. ### 2.9 CONTROL CABLES #### A. General: - Ground cable shields, drain conductors, and equipment to eliminate shock hazard and to minimize ground loops, common-mode returns, noise pickup, cross talk, and other impairments. Comply with Section 26 05 26. - 2. Cable conductors to provide protection against induction in circuits. Crosstalk attenuation within the System shall be in excess of -80 dB throughout the frequency ranges specified. - 3. Minimize the radiation of RF noise generated by the System equipment so as not to interfere with any audio, video, data, computer main distribution frame (MDF), telephone customer service unit (CSU), and electronic private branch exchange (EPBX) equipment the System may service. - 4. The as-installed drawings shall identify each cable as labeled, used cable, and bad cable pairs. - 5. Label system's cables on each end. Test and certify cables in writing to the VA before conducting proof-of-performance testing. Minimum cable test requirements are for impedance compliance, inductance, capacitance, signal level compliance, opens, shorts, cross talk, noise, and distortion, and split pairs on all cables in the frequency ranges used. Make available all cable installation and test records at demonstration to the VA. All changes (used pair, failed pair, etc.) shall be posted in these records as the change occurs. - 6. Power wiring shall not be run in conduit with communications trunk wiring or signal or control wiring operating at 100 volts or less. - B. Analogue control cabling shall be not less than No. 18 AWG solid, with thermoplastic insulated conductors as specified in Section 26 05 19. - C. Copper digital communication cable between the ECC and the B-BC and B-AAC controllers shall be 100BASE-TX Ethernet, Category 5e or 6, not less than minimum 24 American Wire Gauge (AWG) solid, Shielded Twisted Pair (STP) or Unshielded Twisted Pair (UTP), with thermoplastic insulated conductors, enclosed in a thermoplastic outer jacket, as specified in Section 27 15 00. - Other types of media commonly used within IEEE Std 802.3 LANs (e.g., 10Base-T and 10Base-2) shall be used only in cases to interconnect with existing media. - D. Optical digital communication fiber, if used, shall be Multimode or Singlemode fiber, 62.5/125 micron for multimode or 10/125 micron for singlemode micron with SC or ST connectors as specified in TIA-568-C.1. Terminations, patch panels, and other hardware shall be compatible with the specified fiber and shall be as specified in Section 27 15 00. Fiber-optic cable shall be suitable for use with the 100Base-FX or the 100Base-SX standard (as applicable) as defined in IEEE Std 802.3. ### 2.10 FINAL CONTROL ELEMENTS AND OPERATORS - A. Fail Safe Operation: Control valves shall provide "fail safe" operation in either the normally open or normally closed position as required for freeze, moisture, and smoke or fire protection. - B. Spring Ranges: Range as required for system sequencing and to provide tight shut-off. - C. Control Valves: - Valves shall be rated for a minimum of 150 percent of system operating pressure at the valve location but not less than 900 kPa (125 psig). - 2. Valves 50 mm (2 inches) and smaller shall be bronze body with threaded or flare connections. - 3. Valves 60 mm (2 1/2 inches) and larger shall be bronze or iron body with flanged connections. - 4. Brass or bronze seats except for valves controlling media above 100 degrees C (210 degrees F), which shall have stainless steel seats. - 5. Flow characteristics: - a. Three way modulating valves shall be globe pattern. Position versus flow relation shall be linear relation for steam or equal percentage for water flow control. - 6. Maximum pressure drop: - a. Modulating water flow control, greater of 3 meters (10 feet) of water or the pressure drop through the apparatus. - 7. Two position water valves shall be line size. - D. Valve Operators and Relays: - 1. Electric operator shall provide full modulating control of valves. Metal parts shall be aluminum, mill finish galvanized steel, or zinc plated steel or stainless steel. Provide actuator heads which allow for electrical conduit attachment. The motors shall have sufficient closure torque to allow for complete closure of valve or damper under pressure. Provide multiple motors as required to achieve sufficient close-off torque. - a. Minimum valve close-off pressure shall be equal to the system pump's dead-head pressure, minimum 50 psig for valves smaller than 4 inches. - 2. See drawings for required control operation. ### PART 3 - EXECUTION ## 3.1 INSTALLATION ### A. General: - 1. Examine project plans for control devices and equipment locations; and report any discrepancies, conflicts, or omissions to Resident Engineer for resolution before proceeding for installation. - 2. Install equipment, wiring /conduit parallel to or at right angles to building lines. - 3. Install all equipment and in readily accessible locations. Do not run conduit concealed under insulation or inside ducts. - 4. Mount control devices and conduit located on ducts and apparatus with external insulation on standoff support to avoid interference with insulation. - 5. Provide sufficient slack and flexible connections to allow for vibration of piping and equipment. - 6. Run wire connecting devices on or in control cabinets parallel with the sides of the cabinet neatly racked to permit tracing. - 7. Install equipment level and plum. ### B. Electrical Wiring Installation: - 1. All wiring cabling shall be installed in conduits. Install conduits and wiring in accordance with Specification Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS. Conduits carrying control wiring and cabling shall be dedicated to the control wiring and cabling: these conduits shall not carry power wiring. Provide plastic end sleeves at all conduit terminations to protect wiring from burrs. - 2. Install analog signal and communication cables in conduit and in accordance with Specification Section 26 05 19. Install digital communication cables in conduit and in accordance with Specification Section 27 15 00, Communications Horizontal Cabling. - 3. Install conduit and wiring between operator workstation(s), digital controllers, electrical panels, indicating devices, instrumentation, miscellaneous alarm points, thermostats, and relays as shown on the drawings or as required under this section. - 4. Install all electrical work required
for a fully functional system and not shown on electrical plans or required by electrical specifications. Where low voltage (less than 50 volt) power is required, provide suitable Class B transformers. - 5. Install all system components in accordance with local Building Code and National Electric Code. - a. Splices: Splices in shielded and coaxial cables shall consist of terminations and the use of shielded cable couplers. Terminations shall be in accessible locations. Cables shall be harnessed with cable ties. - b. Equipment: Fit all equipment contained in cabinets or panels with service loops, each loop being at least 300 mm (12 inches) long. Equipment for fiber optics system shall be rack mounted, as applicable, in ventilated, self-supporting, code gauge steel enclosure. Cables shall be supported for minimum sag. - c. Cable Runs: Keep cable runs as short as possible. Allow extra length for connecting to the terminal board. Do not bend flexible coaxial cables in a radius less than ten times the cable outside diameter. - d. Use vinyl tape, sleeves, or grommets to protect cables from vibration at points where they pass around sharp corners, through walls, panel cabinets, etc. - 6. Conceal cables, except in mechanical rooms and areas where other conduits and piping are exposed. - 7. Permanently label or code each point of all field terminal strips to show the instrument or item served. Color-coded cable with cable diagrams may be used to accomplish cable identification. - 8. Grounding: ground electrical systems per manufacturer's written requirements for proper and safe operation. ### C. Install Sensors and Controls: ## 1. Temperature Sensors: - a. Install all sensors and instrumentation according to manufacturer's written instructions. Temperature sensor locations shall be readily accessible, permitting quick replacement and servicing of them without special skills and tools. - b. Calibrate sensors to accuracy specified, if not factory calibrated. - c. Use of sensors shall be limited to its duty, e.g., duct sensor shall not be used in lieu of room sensor. - d. Mount sensors rigidly and adequately for the environment within which the sensor operates. Separate extended-bulb sensors form contact with metal casings and coils using insulated standoffs. - e. All pipe mounted temperature sensors shall be installed in wells. - f. All wires attached to sensors shall be air sealed in their conduits or in the wall to stop air transmitted from other areas affecting sensor reading. - g. Permanently mark terminal blocks for identification. Protect all circuits to avoid interruption of service due to short-circuiting or other conditions. Line-protect all wiring that comes from external sources to the site from lightning and static electricity. ## 2. Pressure Sensors: - a. Install high-pressure side of the differential switch between the pump discharge and the check valve. - b. Install snubbers and isolation valves on steam pressure sensing devices. ### 3. Actuators: - a. Mount and link valve actuators according to manufacturer's written instructions. - b. Check operation of valve/actuator combination to confirm that actuator modulates valve smoothly in both open and closed position. #### 4. Flow Switches: - a. Install flow switch according to manufacturer's written instructions. - b. Mount flow switch a minimum of 5 pipe diameters up stream and 5 pipe diameters downstream or 600 mm (2 feet) whichever is greater, from fittings and other obstructions. - c. Assure correct flow direction and alignment. - d. Mount in horizontal piping-flow switch on top of the pipe. ## D. Installation of network: ### 1. Ethernet: - a. The network shall employ Ethernet LAN architecture, as defined by IEEE 802.3. The Network Interface shall be fully Internet Protocol (IP) compliant allowing connection to currently installed IEEE 802.3, Compliant Ethernet Networks. - b. The network shall directly support connectivity to a variety of cabling types. As a minimum provide the following connectivity: 100 Base TX (Category 5e cabling) for the communications between the ECC and the B-BC and the B-AAC controllers. - 2. Third party interfaces: Contractor shall integrate real-time data from building systems by other trades and databases originating from other manufacturers as specified and required to make the system work as one system. ## E. Installation of digital controllers and programming: - Provide a separate digital control panel for each major piece of equipment, such as air handling unit, chiller, pumping unit etc. Points used for control loop reset such as outdoor air, outdoor humidity, or space temperature could be located on any of the remote control units. - Provide sufficient internal memory for the specified control sequences and trend logging. There shall be a minimum of 25 percent of available memory free for future use. - 3. System point names shall be modular in design, permitting easy operator interface without the use of a written point index. - 4. Provide software programming for the applications intended for the systems specified, and adhere to the strategy algorithms provided. - 5. Provide graphics for each piece of equipment and floor plan in the building. This includes each chiller, cooling tower, air handling unit, fan, terminal unit, boiler, pumping unit etc. These graphics shall show all points dynamically as specified in the point list. ## 3.2 SYSTEM VALIDATION AND DEMONSTRATION A. As part of final system acceptance, a system demonstration is required (see below). Prior to start of this demonstration, the contractor is to perform a complete validation of all aspects of the controls and instrumentation system. ## B. Validation - 1. Prepare and submit for approval a validation test plan including test procedures for the performance verification tests. Test Plan shall address all specified functions of the ECC and all specified sequences of operation. Explain in detail actions and expected results used to demonstrate compliance with the requirements of this specification. Explain the method for simulating the necessary conditions of operation used to demonstrate performance of the system. Test plan shall include a test check list to be used by the Installer's agent to check and initial that each test has been successfully completed. Deliver test plan documentation for the performance verification tests to the owner's representative 30 days prior to start of performance verification tests. Provide draft copy of operation and maintenance manual with performance verification test. - 2. After approval of the validation test plan, installer shall carry out all tests and procedures therein. Installer shall completely check out, calibrate, and test all connected hardware and software to insure that system performs in accordance with approved specifications and sequences of operation submitted. Installer shall complete and submit Test Check List. ## C. Demonstration 1. System operation and calibration to be demonstrated by the installer in the presence of the Architect or VA's representative on random samples of equipment as dictated by the Architect or VA's representative. Should random sampling indicate improper commissioning, the owner reserves the right to subsequently witness complete calibration of the system at no addition cost to the VA. - 2. Demonstrate to authorities that all required safeties and life safety functions are fully functional and complete. - 3. Make accessible, personnel to provide necessary adjustments and corrections to systems as directed by balancing agency. - 4. The following witnessed demonstrations of field control equipment shall be included: - a. Observe control systems in shut down condition. Check valves for normal position. - b. Test application software for its ability to communicate with digital controllers, operator workstation, and uploading and downloading of control programs. - c. Demonstrate the software ability to edit the control program offline. - d. Demonstrate reporting of alarm conditions for each alarm and ensure that these alarms are received at the assigned location, including operator workstations. - e. Demonstrate ability of software program to function for the intended applications-trend reports, change in status etc. - f. Demonstrate via graphed trends to show the sequence of operation is executed in correct manner, and that the HVAC systems operate properly through the complete sequence of operation, e.g., seasonal change, occupied/unoccupied mode, and warm-up condition. - g. Demonstrate hardware interlocks and safeties functions, and that the control systems perform the correct sequence of operation after power loss and resumption of power loss. - h. Prepare and deliver to the VA graphed trends of all control loops to demonstrate that each control loop is stable and the set points are maintained. - i. Demonstrate that each control loop responds to set point adjustment and stabilizes within one (1) minute. Control loop trend data shall be instantaneous and the time between data points shall not be greater than one (1) minute. - 5. The controls contractor shall prove communication with the NAE and NIE and from there to the ADX, ultimately out to the EEC. - 6. Witnessed demonstration of ECC functions shall consist of: - a. Display and demonstrate each data entry to show site specific customizing capability. Demonstrate parameter changes. - b. Step through penetration tree, display all graphics, demonstrate dynamic update, and direct access to graphics. - c. Execute digital and analog commands in graphic mode. - d. Demonstrate DDC loop precision and stability via trend logs of inputs and outputs (6 loops minimum). - e. Demonstrate scan, update, and alarm responsiveness. - f. Demonstrate class programming with point options of beep duration, beep rate, alarm archiving, and color banding. - g. Demonstrate chiller, economizer, and chilled water system operation from the ECC. ---- END ----
SECTION 23 21 13 HYDRONIC PIPING # PART 1 - GENERAL #### 1.1 DESCRIPTION - A. Water piping to connect HVAC equipment, including the following: - 1. Chilled glycol-water piping. #### 1.2 RELATED WORK - A. Section 01 00 00, GENERAL REQUIREMENTS. - B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES. - C. Section 23 05 11, COMMON WORK RESULTS FOR HVAC: General mechanical requirements and items, which are common to more than one section of Division 23. - D. Section 23 07 11, HVAC INSULATION: Piping insulation. - E. Section 23 25 00, HVAC WATER TREATMENT: Water treatment for closed systems. - F. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC: Temperature and pressure sensors and valve operators. ## 1.3 QUALITY ASSURANCE - A. Section 23 05 11, COMMON WORK RESULTS FOR HVAC, which includes welding qualifications. - B. Submit prior to welding of steel piping a certificate of Welder's certification. The certificate shall be current and not more than one year old. - C. All grooved joint couplings, fittings, valves, and specialties shall be the products of a single manufacturer. Grooving tools shall be the same manufacturer as the grooved components. - 1. All castings used for coupling housings, fittings, valve bodies, etc., shall be date stamped for quality assurance and traceability. ## 1.4 SUBMITTALS - A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES. - B. Manufacturer's Literature and Data: - 1. Pipe and equipment supports. - 2. Pipe and tubing, with specification, class or type, and schedule. - 3. Pipe fittings, including miscellaneous adapters and special fittings. - 4. Flanges, gaskets and bolting. - 5. Grooved joint couplings and fittings. - 6. Valves of all types. - 7. Strainers. - 8. Flexible connectors for water service. - 9. All specified hydronic system components. - 10. Gages. - 11. Thermometers and test wells. - C. Manufacturer's certified data report, Form No. U-1, for ASME pressure vessels: - 1. Chilled Water Buffer tanks. - D. Submit the welder's qualifications in the form of a current (less than one year old) and formal certificate. - E. Coordination Drawings: Refer to Article, SUBMITTALS of Section 23 05 11, COMMON WORK RESULTS FOR HVAC. - F. As-Built Piping Diagrams: Provide drawing as follows for chilled water system. - 1. One complete set of reproducible drawings. - 2. One complete set of drawings in electronic Autocad and pdf format. ## 1.5 APPLICABLE PUBLICATIONS - A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. American National Standards Institute, Inc. - B. American Society of Mechanical Engineers/American National Standards Institute, Inc. (ASME/ANSI): B1.20.1-83(R2006)......Pipe Threads, General Purpose (Inch) B16.4-06.......Gray Iron Threaded FittingsB16.18-01 Cast Copper Alloy Solder joint Pressure fittings B16.23-02......Cast Copper Alloy Solder joint Drainage fittings B40.100-05......Pressure Gauges and Gauge Attachments C. American National Standards Institute, Inc./Fluid Controls Institute (ANSI/FCI): 70-2-2006......Control Valve Seat Leakage D. American Society of Mechanical Engineers (ASME): 300 | | B16.4-2006 | Gray Iron Threaded Fittings: (Class 125 and | |----|--------------------------|--| | | | 250) | | | B16.5-2003 | Pipe Flanges and Flanged Fittings: NPS ½ | | | | through NPS 24 Metric/Inch Standard | | | B16.9-07 | Factory Made Wrought Butt Welding Fittings | | | B16.11-05 | Forged Fittings, Socket Welding and Threaded | | | B16.18-01 | Cast Copper Alloy Solder Joint Pressure | | | | Fittings | | | B16.22-01 | Wrought Copper and Bronze Solder Joint Pressure | | | | Fittings. | | | B16.24-06 | Cast Copper Alloy Pipe Flanges and Flanged | | | | Fittings | | | B16.39-06 | Malleable Iron Threaded Pipe Unions | | | B16.42-06 | Ductile Iron Pipe Flanges and Flanged Fittings | | | B31.1-08 | Power Piping | | Ε. | American Society for Tes | sting and Materials (ASTM): | | | A47/A47M-99 (2004) | Ferritic Malleable Iron Castings | | | A53/A53M-07 | Standard Specification for Pipe, Steel, Black | | | | and Hot-Dipped, Zinc-Coated, Welded and | | | | Seamless | | | A126-04 | Standard Specification for Gray Iron Castings | | | | for Valves, Flanges, and Pipe Fittings | | | A183-03 | Standard Specification for Carbon Steel Track | | | | Bolts and Nuts | | | A216/A216M-08 | Standard Specification for Steel Castings, | | | | Carbon, Suitable for Fusion Welding, for High | | | | Temperature Service | | | A307-07 | Standard Specification for Carbon Steel Bolts | | | | and Studs, 60,000 PSI Tensile Strength | | | | Standard Specification for Ductile Iron Castings | | | A615/A615M-08 | Deformed and Plain Carbon Steel Bars for | | | | Concrete Reinforcement | | | | Steel Sheet, Zinc-Coated (Galvanized) or Zinc- | | | A653/A 653M-08 | | | | A653/A 653M-08 | Iron Alloy Coated (Galvannealed) By the Hot-Dip | | | | | | | B62-02 Stand | dard Specification for Composition Bronze or | | | | | | |----|---|--|--|--|--|--|--| | | Ounce | e Metal Castings | | | | | | | | B88-03 Stand | dard Specification for Seamless Copper Water | | | | | | | | Tube | | | | | | | | | B209-07 Alumi | num and Aluminum Alloy Sheet and Plate | | | | | | | | C177-04 Stand | lard Test Method for Steady State Heat Flux | | | | | | | | Measu | rements and Thermal Transmission Properties | | | | | | | | by Me | ans of the Guarded Hot Plate Apparatus | | | | | | | | C533-07 Calci | um Silicate Block and Pipe Thermal | | | | | | | | Insu | ation | | | | | | | | C552-07 Cellu | lar Glass Thermal Insulation | | | | | | | | C591-08 Unfac | ed Preformed Rigid Cellular | | | | | | | | Poly | socyanurate Thermal Insulation | | | | | | | F. | American Welding Society (AWS): | | | | | | | | | B2.1-02Standard Welding Procedure Specification | | | | | | | | G. | Copper Development Association, Inc. (CDA): | | | | | | | | | CDA A4015-06Coppe | er Tube Handbook | | | | | | | Н. | . Expansion Joint Manufacturer | s Association, Inc. (EJMA): | | | | | | | | EMJA-2003Expansion Joint Manufacturer's Association | | | | | | | | | Stand | dards, Ninth Edition | | | | | | | I. | . Manufacturers Standardization | n Society (MSS) of the Valve and Fitting | | | | | | | | Industry, Inc.: | | | | | | | | | SP-67-02aButte | erfly Valves | | | | | | | | SP-70-06 | Iron Gate Valves, Flanged and Threaded | | | | | | | | Ends | | | | | | | | | SP-71-05Gray | Iron Swing Check Valves, Flanged and | | | | | | | | Threa | aded Ends | | | | | | | | SP-80-08Bronz | ze Gate, Globe, Angle and Check Valves | | | | | | | | SP-85-02Cast | Iron Globe and Angle Valves, Flanged and | | | | | | | | Threa | aded Ends | | | | | | | | SP-110-96Ball | Valves Threaded, Socket-Welding, Solder | | | | | | | | | c, Grooved and Flared Ends | | | | | | | | | Iron and Ductile Iron In-line, Spring | | | | | | | | Loade | ed, Center-Guided Check Valves | | | | | | ## PART 2 - PRODUCTS # 2.1 PIPE AND EQUIPMENT SUPPORTS, PIPE SLEEVES, AND WALL AND CEILING PLATES A. Provide in accordance with Section 23 05 11, COMMON WORK RESULTS FOR HVAC. ## 2.2 PIPE AND TUBING - A. Chilled-Glycol Water and Vent Piping: - 1. Steel: ASTM A53 Grade B, seamless or ERW, Schedule 40. - 2. Copper water tube option: ASTM B88, Type K or L, hard drawn. - B. Pipe supports, including insulation shields, for above ground piping: Section 23 05 11, COMMON WORK RESULTS FOR HVAC. ## 2.3 FITTINGS FOR STEEL PIPE - A. 50 mm (2 inches) and Smaller: Screwed or welded joints. - 1. Butt welding: ASME B16.9 with same wall thickness as connecting piping. - 2. Forged steel, socket welding or threaded: ASME B16.11. - 3. Screwed: 150 pound malleable iron, ASME B16.3. 125 pound cast iron, ASME B16.4, may be used in lieu of malleable iron. Bushing reduction of a single pipe size, or use of close nipples, is not acceptable. - 4. Unions: ASME B16.39. - 5. Water hose connection adapter: Brass, pipe thread to 20 mm (3/4 inch) garden hose thread, with hose cap nut. - B. 65 mm (2-1/2 inches) and Larger: Welded or flanged joints. Contractor's option: Grooved mechanical couplings and fittings are optional. - 1. Butt welding fittings: ASME B16.9 with same wall thickness as connecting piping. Elbows shall be long radius type, unless otherwise noted. - 2. Welding flanges and bolting: ASME B16.5: - a. Water service: Weld neck or slip-on, plain face, with 6 mm (1/8 inch) thick full face neoprene gasket suitable for 104 degrees C (220 degrees F). - 1) Contractor's option: Convoluted, cold formed 150 pound steel flanges, with teflon gaskets, may be used for water service. - b. Flange bolting: Carbon steel machine bolts or studs and nuts, ${\tt ASTM}$ A307, Grade B. - C. Welded Branch and Tap Connections: Forged steel weldolets, or branchlets and threadolets may be used for branch connections up to one - pipe size smaller than the main. Forged steel half-couplings, ASME B16.11 may be used for drain, vent and gage connections. - D. Grooved Mechanical Pipe Couplings and Fittings (Contractor's Option): Grooved Mechanical Pipe Couplings and Fittings may be used, with cut or roll grooved pipe, in water service up to 110 degrees C (230 degrees F) in lieu of welded, screwed or flanged connections. All joints must be rigid type. - Grooved mechanical couplings: Malleable iron, ASTM A47 or ductile iron, ASTM A536, fabricated in two or more parts, securely held together by two or more track-head, square, or oval-neck bolts, ASTM A449 and A183. - 2. Gaskets: Rubber product recommended by the coupling manufacturer for the intended service. - 3. Grooved end fittings: Malleable iron, ASTM A47; ductile iron, ASTM A536; or steel, ASTM A53 or A106, designed to accept grooved mechanical couplings. Tap-in type branch connections are acceptable. ## 2.4
FITTINGS FOR COPPER TUBING #### A. Joints: - Solder Joints: Joints shall be made up in accordance with recommended practices of the materials applied. Apply 95/5 tin and antimony on all copper piping. - 2. Mechanically formed tee connection in water and drain piping: Form mechanically extracted collars in a continuous operation by drilling pilot hole and drawing out tube surface to form collar, having a height of not less than three times the thickness of tube wall. Adjustable collaring device shall insure proper tolerance and complete uniformity of the joint. Notch and dimple joining branch tube in a single process to provide free flow where the branch tube penetrates the fitting. - B. Bronze Flanges and Flanged Fittings: ASME B16.24. - C. Fittings: ANSI/ASME B16.18 cast copper or ANSI/ASME B16.22 solder wrought copper. # 2.5 DIELECTRIC FITTINGS - A. Provide where copper tubing and ferrous metal pipe are joined. - B. 50 mm (2 inches) and Smaller: Threaded dielectric union, ASME B16.39. - C. 65 mm (2 1/2 inches) and Larger: Flange union with dielectric gasket and bolt sleeves, ASME B16.42. - D. Temperature Rating, 99 degrees C (210 degrees F). - E. Contractor's option: On pipe sizes 2" and smaller, screwed end brass ball valves may be used in lieu of dielectric unions. ## 2.6 SCREWED JOINTS - A. Pipe Thread: ANSI B1.20. - B. Lubricant or Sealant: Oil and graphite or other compound approved for the intended service. ## 2.7 VALVES - A. Asbestos packing is not acceptable. - B. All valves of the same type shall be products of a single manufacturer. - C. Provide chain operators for valves 150 mm (6 inches) and larger when the centerline is located 2400 mm (8 feet) or more above the floor or operating platform. - D. Shut-Off Valves - 1. Ball Valves (Pipe sizes 2" and smaller): MSS-SP 110, screwed or solder connections, brass or bronze body with chrome-plated ball with full port and Teflon seat at 2760 kPa (400 psig) working pressure rating. Provide stem extension to allow operation without interfering with pipe insulation. - 2. Butterfly Valves (Pipe Sizes 2-1/2" and larger): Provide stem extension to allow 50 mm (2 inches) of pipe insulation without interfering with valve operation. MSS-SP 67, flange lug type or grooved end rated 1205 kPa (175 psig) working pressure at 93 degrees C (200 degrees F). Valves shall be ANSI Leakage Class VI and rated for bubble tight shut-off to full valve pressure rating. Valve shall be rated for dead end service and bi-directional flow capability to full rated pressure. Not permitted for direct buried pipe applications. - a. Body: Cast iron, ASTM A126, Class B. Malleable iron, ASTM A47 electro-plated, or ductile iron, ASTM A536, Grade 65-45-12 electro-plated. - b. Trim: Bronze, aluminum bronze, or 300 series stainless steel disc, bronze bearings, 316 stainless steel shaft and manufacturer's recommended resilient seat. Resilient seat shall be field replaceable, and fully line the body to completely isolate the body from the product. A phosphate coated steel shaft - or stem is acceptable, if the stem is completely isolated from the product. - c. Actuators: Field interchangeable. Valves for balancing service shall have adjustable memory stop to limit open position. - 1) Valves 150 mm (6 inches) and smaller: Lever actuator with minimum of seven locking positions, except where chain wheel is required. - 2) Valves 200 mm (8 inches) and larger: Enclosed worm gear with handwheel, and where required, chain-wheel operator. - 3) Gate Valves (Contractor's Option in lieu of Ball or Butterfly Valves): - a) 50 mm (2 inches) and smaller: MSS-SP 80, Bronze, 1034 kPa (150 psig), wedge disc, rising stem, union bonnet. - b) 65 mm (2 1/2 inches) and larger: Flanged, outside screw and yoke. MSS-SP 70, iron body, bronze mounted, 861 kPa (125 psig) wedge disc. # E. Globe and Angle Valves ## 1. Globe Valves - a. 50 mm (2 inches) and smaller: MSS-SP 80, bronze, 1034 kPa (150 lb.) Globe valves shall be union bonnet with metal plug type disc. - b. 65 mm (2 1/2 inches) and larger: 861 kPa (125 psig), flanged, iron body, bronze trim, MSS-SP-85 for globe valves. ## 2. Angle Valves: - a. 50 mm (2 inches) and smaller: MSS-SP 80, bronze, 1034 kPa (150 lb.) Angle valves shall be union bonnet with metal plug type disc. - b. 65 mm (2 1/2 inches) and larger: 861 kPa (125 psig), flanged, iron body, bronze trim, MSS-SP-85 for angle. ## F. Check Valves - 1. Swing Check Valves: - a. 50 mm (2 inches) and smaller: MSS-SP 80, bronze, 1034 kPa (150 lb.), 45 degree swing disc. - b. 65 mm (2 1/2 inches) and larger: 861 kPa (125 psig), flanged, iron body, bronze trim, MSS-SP-71 for check valves. - 2. Non-Slam or Silent Check Valve: Spring loaded double disc swing check or internally guided flat disc lift type check for bubble tight shut-off. Provide where check valves are shown in chilled water and hot water piping. Check valves incorporating a balancing feature may be used. - a. Body: MSS-SP 125 cast iron, ASTM A126, Class B, or steel, ASTM A216, Class WCB, or ductile iron, ASTM 536, flanged, grooved, or wafer type. - b. Seat, disc and spring: 18-8 stainless steel, or bronze, ASTM B62. Seats may be elastomer material. - G. Water Flow Balancing Valves: For flow regulation and shut-off. Valves shall be line size rather than reduced to control valve size. - 1. Ball or Globe style valve. - 2. A dual purpose flow balancing valve and adjustable flow meter, with bronze or cast iron body, calibrated position pointer, valved pressure taps or quick disconnects with integral check valves and preformed polyurethane insulating enclosure. ## 2.8 STRAINERS - A. Y Type. - Screens: Bronze, monel metal or 18-8 stainless steel, free area not less than 2-1/2 times pipe area, with perforations as follows: 1.1 mm (0.045 inch) diameter perforations for 100 mm (4 inches) and larger: 3.2 mm (0.125 inch) diameter perforations. - 2. Strainer for chiller evaporator: screen perforation per chiller manufacturer recommendation. # 2.9 FLEXIBLE CONNECTORS FOR WATER SERVICE - A. Flanged Spool Connector: - 1. Single arch or multiple arch type. Tube and cover shall be constructed of chlorobutyl elastomer with full faced integral flanges to provide a tight seal without gaskets. Connectors shall be internally reinforced with high strength synthetic fibers impregnated with rubber or synthetic compounds as recommended by connector manufacturer, and steel reinforcing rings. - 2. Working pressures and temperatures shall be as follows: - a. Connector sizes 50 mm to 100 mm (2 inches to 4 inches), 1137 kPa (165psig) at 121 degrees C $(250 \ degrees \ F)$. - b. Connector sizes 125 mm to 300 mm (5 inches to 12 inches), 965 kPa (140 psig) at 121 degrees C (250 degrees F). - 3. Provide ductile iron retaining rings and control units. B. Mechanical Pipe Couplings: See other fittings specified under Part 2, PRODUCTS. ## 2.10 HYDRONIC SYSTEM COMPONENTS - A. Tangential Air Separator: Reuse existing. - B. Diaphragm Type Pre-Pressurized Expansion Tank: Reuse existing. - C. Pressure Reducing Valve (Water/glycol): Diaphragm or bellows operated, spring loaded type, with minimum adjustable range of 28 kPa (4 psig) above and below set point. Bronze, brass or iron body and bronze, brass or stainless steel trim, rated 861 kPa (125 psig) working pressure at 107 degrees C (225 degrees F). - D. Pressure Relief Valve: Reuse existing. - E. Thermal Inertia (Buffer) Tank - 1. Provide carbon steel, baffled water tank, designed for increasing thermal inertia and reducing cycle time of cooling equipment. - 2. Manufacturer's standard access way, minimum 16"x12". - 3. 125 lb. ASME stamp. - 4. 150 lb flanged or grooved inlet and outlet. - 5. Vertical orientation, with integral ring stand, drain, vent and inspection openings. ## 2.11 GAGES, PRESSURE AND COMPOUND - A. ASME B40.100, Accuracy Grade 1A, (pressure, vacuum, or compound for air, oil or water), initial mid-scale accuracy 1 percent of scale (Qualify grade), metal or phenolic case, 115 mm (4-1/2 inches) in diameter, 6 mm (1/4 inch) NPT bottom connection, white dial with black graduations and pointer, clear glass or acrylic plastic window, suitable for board mounting. Provide red "set hand" to indicate normal working pressure. - B. Provide brass lever handle union cock. Provide brass/bronze pressure snubber for gages in water service. - C. Range of Gages: Provide range equal to at least 130 percent of normal operating range. - 1. For condenser water suction (compound): Minus 100 kPa (30 inches Hg) to plus 700 kPa (100 psig). ## 2.12 PRESSURE/TEMPERATURE TEST PROVISIONS A. Pete's Plug: 6 mm (1/4 inch) MPT by 75 mm (3 inches) long, brass body and cap, with retained safety cap, nordel self-closing valve cores, permanently installed in piping where shown, or in lieu of pressure gage test connections shown on the drawings. - B. Provide one each of the following test items to the Resident Engineer: - 1. 6 mm (1/4 inch) FPT by 3 mm (1/8 inch) diameter stainless steel pressure gage adapter probe for extra long test plug. PETE'S 500 XL is an example. - 2. 90 mm (3-1/2 inch) diameter, one percent accuracy, compound gage, -- 100 kPa (30 inches) Hg to 700 kPa (100 psig) range. - 3. 0 104 degrees C (220 degrees F) pocket thermometer one-half degree accuracy, 25 mm (one inch) dial, 125 mm (5 inch) long stainless steel stem, plastic case. ## 2.13 THERMOMETERS - A. Mercury or organic liquid filled type, red or blue column, clear plastic window, with 150 mm (6 inch) brass stem, straight, fixed or adjustable angle as required for each in reading. - B. Case: Chrome plated brass or aluminum with enamel finish. - C. Scale: Not less than 225 mm (9 inches), range as described below, two degree graduations. - D. Separable Socket (Well): Brass, extension neck type to clear pipe insulation. - E. Scale ranges: - 1. Chilled Water and Glycol-Water: 0-38 degrees C (32-100 degrees F). - 2. Hot Water and Glycol-Water: -1 116 degrees C (30-240 degrees F). # 2.14 FIRESTOPPING
MATERIAL Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC. ## PART 3 - EXECUTION # 3.1 GENERAL A. The drawings show the general arrangement of pipe and equipment but do not show all required fittings and offsets that may be necessary to connect pipes to equipment, existing piping, etc., and to coordinate with other trades. Provide all necessary fittings, offsets and pipe runs based on field measurements and at no additional cost to the government. Coordinate with other trades for space available and relative location of HVAC equipment and accessories to be connected on ceiling grid. Pipe location on the drawings shall be altered by contractor where necessary to avoid interferences and clearance difficulties. - B. Store materials to avoid excessive exposure to weather or foreign materials. Keep inside of piping relatively clean during installation and protect open ends when work is not in progress. - C. Support piping securely. Refer to PART 3, Section 23 05 11, COMMON WORK RESULTS FOR HVAC. - D. Install piping generally parallel to walls and column center lines, unless shown otherwise on the drawings. Space piping, including insulation, to provide 25 mm (one inch) minimum clearance between adjacent piping or other surface. Unless shown otherwise, slope drain piping down in the direction of flow not less than 25 mm (one inch) in 12 m (40 feet). Provide eccentric reducers to keep bottom of sloped piping flat. - E. Locate and orient valves to permit proper operation and access for maintenance of packing, seat and disc. Generally locate valve stems in overhead piping in horizontal position. Provide a union adjacent to one end of all threaded end valves. Control valves usually require reducers to connect to pipe sizes shown on the drawing. Install butterfly valves with the valve open as recommended by the manufacturer to prevent binding of the disc in the seat. - F. Offset equipment connections to allow valving off for maintenance and repair with minimal removal of piping. Provide flexibility in equipment connections and branch line take-offs with 3-elbow swing joints where noted on the drawings. - G. Tee water piping runouts or branches into the side of mains or other branches. Avoid bull-head tees, which are two return lines entering opposite ends of a tee and exiting out the common side. - H. Provide manual or automatic air vent at all piping system high points and drain valves at all low points. Install piping to floor drains from all automatic air vents. - I. Connect piping to equipment as shown on the drawings. Install components furnished by others such as: - 1. Control valve bodies, flow switches, pressure taps with valve, and wells for sensors. - J. Thermometer Wells: In pipes 65 mm (2-1/2 inches) and smaller increase the pipe size to provide free area equal to the upstream pipe area. - K. Firestopping: Fill openings around uninsulated piping penetrating floors or fire walls, with firestop material. For firestopping insulated piping refer to Section 23 07 11, HVAC INSULATION. - L. Where copper piping is connected to steel piping, provide dielectric connections. ## 3.2 PIPE JOINTS - A. Welded: Beveling, spacing and other details shall conform to ASME B31.1 and AWS B2.1. See Welder's qualification requirements under "Quality Assurance" in Section 23 05 11, COMMON WORK RESULTS FOR HVAC. - B. Screwed: Threads shall conform to ASME B1.20; joint compound shall be applied to male threads only and joints made up so no more than three threads show. Coat exposed threads on steel pipe with joint compound, or red lead paint for corrosion protection. - C. Mechanical Joint: Pipe grooving shall be in accordance with joint manufacturer's specifications. Lubricate gasket exterior including lips, pipe ends and housing interiors to prevent pinching the gasket during installation. Lubricant shall be as recommended by coupling manufacturer. - D. 125 Pound Cast Iron Flange (Plain Face): Mating flange shall have raised face, if any, removed to avoid overstressing the cast iron flange. ## 3.3 LEAK TESTING ABOVEGROUND PIPING - A. Inspect all joints and connections for leaks and workmanship and make corrections as necessary, to the satisfaction of the Resident Engineer. Tests may be either of those below, or a combination, as approved by the Resident Engineer. - B. An operating test at design pressure, and for hot systems, design maximum temperature. - C. A hydrostatic test at 1.5 times design pressure. For water systems the design maximum pressure would usually be the static head, or expansion tank maximum pressure, plus pump head. Factory tested equipment (convertors, exchangers, coils, etc.) need not be field tested. Isolate equipment where necessary to avoid excessive pressure on mechanical seals and safety devices. ## 3.4 FLUSHING AND CLEANING PIPING SYSTEMS A. Water Piping: Clean systems as recommended by the suppliers of chemicals specified in Section 23 25 00, HVAC WATER TREATMENT. - 1. Initial flushing: Remove loose dirt, mill scale, metal chips, weld beads, rust, and like deleterious substances without damage to any system component. Provide temporary piping or hose to bypass coils, control valves, exchangers and other factory cleaned equipment unless acceptable means of protection are provided and subsequent inspection of hide-out areas takes place. Isolate or protect clean system components, including pumps and pressure vessels, and remove any component which may be damaged. Open all valves, drains, vents and strainers at all system levels. Remove plugs, caps, spool pieces, and components to facilitate early debris discharge from system. Sectionalize system to obtain debris carrying velocity of 1.8 m/S (6 feet per second), if possible. Connect dead-end supply and return headers as necessary. Flush bottoms of risers. Install temporary strainers where necessary to protect down-stream equipment. Supply and remove flushing water and drainage by various type hose, temporary and permanent piping and Contractor's booster pumps. Flush until clean as approved by the Resident Engineer. - 2. Cleaning: Using products supplied in Section 23 25 00, HVAC WATER TREATMENT, circulate systems at normal temperature to remove adherent organic soil, hydrocarbons, flux, pipe mill varnish, pipe joint compounds, iron oxide, and like deleterious substances not removed by flushing, without chemical or mechanical damage to any system component. Removal of tightly adherent mill scale is not required. Keep isolated equipment which is "clean" and where dead-end debris accumulation cannot occur. Sectionalize system if possible, to circulate at velocities not less than 1.8 m/S (6 feet per second). Circulate each section for not less than four hours. Blow-down all strainers, or remove and clean as frequently as necessary. Drain and prepare for final flushing. - 3. Final Flushing: Return systems to conditions required by initial flushing after all cleaning solution has been displaced by clean make-up. Flush all dead ends and isolated clean equipment. Gently operate all valves to dislodge any debris in valve body by throttling velocity. Flush for not less than one hour. ## 3.5 WATER TREATMENT A. Close and fill system as soon as possible after final flushing to minimize corrosion. VA Tomah Medical Center, WI Replace Chiller-Building 403 100% Bid Documents - B. Charge systems with chemicals specified in Section 23 25 00, HVAC WATER TREATMENT. - C. Utilize this activity, by arrangement with the Resident Engineer, for instructing VA operating personnel. # 3.6 OPERATING AND PERFORMANCE TEST AND INSTRUCTION - A. Refer to PART 3, Section 23 05 11, COMMON WORK RESULTS FOR HVAC - B. Adjust red set hand on pressure gages to normal working pressure. - - - E N D - - - # SECTION 23 25 00 HVAC WATER TREATMENT ## PART 1 - GENERAL #### 1.1 DESCRIPTION - A. This section specifies cleaning and treatment of circulating HVAC water systems, including the following. - 1. Cleaning compounds. - 2. Chemical treatment for closed loop heat transfer systems. - 3. Glycol-water heat transfer systems. #### 1.2 RELATED WORK - A. Section 01 00 00, GENERAL REQUIREMENTS. - B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES. - C. Section 23 05 11, COMMON WORK RESULTS FOR HVAC. - D. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC. - E. Section 23 21 13, HYDRONIC PIPING. ## 1.3 QUALITY ASSURANCE - A. Refer to paragraph, QUALITY ASSURANCE in Section 23 05 11, COMMON WORK RESULTS FOR HVAC. - B. Technical Services: Provide the services of an experienced water treatment chemical engineer or technical representative to direct flushing, cleaning, pre-treatment, training, debugging, and acceptance testing operations; direct and perform chemical limit control during construction period. Minimum service during construction/start-up shall be 6 hours. - C. Chemicals: Chemicals shall be non-toxic approved by local authorities and meeting applicable EPA requirements. #### 1.4 SUBMITTALS - A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES. - B. Manufacturer's Literature and Data including: - 1. Cleaning compounds and recommended procedures for their use. - 2. Chemical treatment for closed systems, including installation and operating instructions. - 3. Glycol-water system materials, equipment, and installation. - C. Water analysis verification. - D. Materials Safety Data Sheet for all proposed chemical compounds, based on U.S. Department of Labor Form No. L5B-005-4. E. Maintenance and operating instructions in accordance with Section 01 00 00, GENERAL REQUIREMENTS. ## 1.5 APPLICABLE PUBLICATIONS - A. The publication listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. - B. National Fire Protection Association (NFPA): 70-2008......National Electric Code (NEC) #### PART 2 - PRODUCTS ## 2.1 CLEANING COMPOUNDS - A. Alkaline phosphate or non-phosphate
detergent/surfactant/specific to remove organic soil, hydrocarbons, flux, pipe mill varnish, pipe compounds, iron oxide, and like deleterious substances, with or without inhibitor, suitable for system wetted metals without deleterious effects. - B. All chemicals to be acceptable for discharge to sanitary sewer. - C. Refer to Section 23 21 13, HYDRONIC PIPING, PART 3, for flushing and cleaning procedures. #### 2.2 CHEMICAL TREATMENT FOR CLOSED LOOP SYSTEMS - A. Inhibitor: Provide sodium nitrite/borate, molybdate-based inhibitor or other approved compound suitable for make-up quality and make-up rate and which will cause or enhance bacteria/corrosion problems or mechanical seal failure due to excessive total dissolved solids. Shot feed manually. Maintain inhibitor residual as determined by water treatment laboratory, taking into consideration residual and temperature effect on pump mechanical seals. - B. pH Control: Inhibitor formulation shall include adequate buffer to maintain pH range of 8.0 to 10.5. - C. Performance: Protect various wetted, coupled, materials of construction including ferrous, and red and yellow metals. Maintain system essentially free of scale, corrosion, and fouling. Corrosion rate of following metals shall not exceed specified mills per year penetration; ferrous, 0-2; brass, 0-1; copper, 0-1. Inhibitor shall be stable at equipment skin surface temperatures and bulk water temperatures of not less than 121 degrees C (250 degrees F) and 52 degrees C (125 degrees Fahrenheit) respectively. Heat exchanger fouling and capacity reduction shall not exceed that allowed by fouling factor 0.0005. D. Pot Feeder: By-pass type, VA to furnish chemical feed pot for contractor to install. ## 2.3 GLYCOL-WATER SYSTEM - A. Propylene glycol shall be inhibited with 1.75 percent dipotassium phosphate. Do not use automotive anti-freeze because the inhibitors used are not needed and can cause sludge precipitate that interferes with heat transfer. - B. Provide required amount of glycol to obtain the percent by volume for glycol-water systems as follows and to provide one-half tank reserve supply: 30 percent for chilled water system. ## C. Glycol-Water Make-up System: - 1. Glycol-Water storage tank: Self supporting polyethylene, minimum 90 mil thickness, with removable cover or black steel with 90 mil polyethylene insert. Capacity shall be 213 L (55 gallons), with approximate diameter of 584 mm (23 inches) and height of 914 mm (36 inches). Reinforced threaded pipe connections shall be provided for all connections. Provide identification for tank showing name of the contents. - 2. Glycol-Water make-up pump: Bronze fitted, self-priming, high head type suitable for pumping a 33 percent to 50 percent glycol-water solution in intermittent service. The pump shall be provided with a mechanical shaft seal and be flange connected to a 1750 rpm NEMA type C motor. The pump capacity shall be 11 L/m (3 gpm), 345 kPa (50 psig) discharge pressure with a suction lift capability of 127 mm (5 inches) of mercury, with a 2.5 kW (1/3 horsepower) drip-proof motor. The pump may be a "gear-within-a-gear" positive displacement type with built-in adjustable set point relief valve set for design head of the pump, or the pump may be a regenerative turbine type providing self-priming with built-in or external adjustable set point relief valve set for design head of the pump. - 3. Back pressure regulating valve: Spring loaded, diaphragm actuated type with bronze or steel body, stainless steel trim with capacity to relieve 100 percent of pump flow with an allowable rise in the regulated pressure of 69 kPa (10 psig) above the set point. Set point shall be 103 kPa (15 psig) above system PRV setting. 23 25 00 - 3 - 4. Low liquid level control: Steel or plastic float housing, stainless steel or plastic float, positive snap-acting SPST switch mechanism, rated 10 amps-120 volt AC, in General Purpose (NEMA 1) enclosure. The control shall be rated for pressures to 1034 kPa (150 psig) and make alarm circuit on low water level. The alarm circuit shall be wired to an alarm light on the nearest local Temperature Control panel (LTCP). Provide remote output relay to indicate alarm condition at the Building Control System specified under Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC. - 5. Control panel factory wired to pump, pressure and float switches and other controls, complete with 8 ft, 16 ga. power cord with plug. ## 2.4 EQUIPMENT AND MATERIALS IDENTIFICATION Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC. ## PART 3 - EXECUTION ## 3.1 INSTALLATION - A. Delivery and Storage: Deliver all chemicals in manufacturer's sealed shipping containers. Store in designated space and protect from deleterious exposure and hazardous spills. - B. Install equipment furnished by the chemical treatment supplier and charge systems according to the manufacturer's instructions and as directed by the Technical Representative. - C. Before adding cleaning chemical to the closed system, all air handling coils and fan coil units should be isolated by closing the inlet and outlet valves and opening the bypass valves. This is done to prevent dirt and solids from lodging the coils. - D. Do not valve in or operate system pumps until after system has been cleaned. - E. After chemical cleaning is satisfactorily completed, open the inlet and outlet valves to each coil and close the by-pass valves. Also, clean all strainers. - F. Perform tests and report results in accordance with Section 01 00 00, GENERAL REQUIREMENTS. - G. After cleaning is complete, and water PH is acceptable to manufacturer of water treatment chemical, add manufacturer-recommended amount of chemicals to systems. VA Tomah Medical Center, WI Replace Chiller-Building 403 100% Bid Documents H. Instruct VA personnel in system maintenance and operation in accordance with Section 01 00 00, GENERAL REQUIREMENTS. - - - E N D - - - 23 25 00 - 5 # SECTION 23 64 00 PACKAGED WATER CHILLERS ## PART 1 - GENERAL #### 1.1 DESCRIPTION A. Rotary-Screw air-cooled chillers complete with accessories and packaged with water side economizer. #### 1.2 RELATED WORK - A. Section 00 72 00, GENERAL CONDITIONS. - B. Section 01 00 00, GENERAL REQUIREMENTS. - C. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES. - D. Section 23 05 11, COMMON WORK RESULTS FOR HVAC. - E. Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT. - F. Section 23 21 13, HYDRONIC PIPING. - G. Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC EQUIPMENT. #### 1.3 DEFINITION - A. Engineering Control Center (ECC): The centralized control point for the intelligent control network. The ECC comprises of personal computer and connected devices to form a single workstation. - B. BACNET: Building Automation Control Network Protocol, ASHRAE Standard 135. - C. Ethernet: A trademark for a system for exchanging messages between computers on a local area network using coaxial, fiber optic, or twisted-pair cables. - D. FTT-10: Echelon Transmitter-Free Topology Transceiver. # 1.4 QUALITY ASSURANCE - A. Refer to Paragraph, QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC, and comply with the following. - B. Refer to PART 3 herein after and Section 01 00 00, GENERAL REQUIREMENTS for test performance. - C. Comply with AHRI requirements for testing and certification of the chillers. - D. Refer to paragraph, WARRANTY, Section 00 72 00, GENERAL CONDITIONS, except as noted below: - 1. Provide a 5-year motor, and compressor warranty to include materials, parts and labor. - E. Refer to OSHA 29 CFR 1910.95(a) and (b) for Occupational Noise Exposure Standard ## 1.5 APPLICABLE PUBLICATIONS - A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. - B. Air Conditioning, Heating and Refrigeration Institute (AHRI): 370-01......Sound Rating of Large Outdoor Refrigerating and Air-Conditioning Equipment 495-1999 (R2002)......Refrigerant Liquid Receivers 550/590-03......Standard for Water Chilling Packages Using the Vapor Compression Cycle 575-94..... Methods for Measuring Machinery Sound within Equipment Space C. American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE): ANSI/ASHRASE-15-2007....Safety Standard for Mechanical Refrigeration Systems GDL 3-1996............Guidelines for Reducing Emission of Halogenated Refrigerants in Refrigeration and Air Conditioning Equipment and Systems D. American Society of Mechanical Engineers (ASME): 2007ASME Boiler and Pressure Vessel Code, Section VIII, "Pressure Vessels - Division 1" - E. American Society of Testing Materials (ASTM): - C 534/ C 534M-2008.....Preformed, Flexible Elastomeric Cellular Thermal Insulation in Sheet and Tubular Form - C 612-04.....Mineral-fiber Block and Board Thermal Insulation - F. National Electrical Manufacturing Association (NEMA): 250-2008..... Enclosures for Electrical Equipment (1000 Volts Maximum) G. National Fire Protection Association (NFPA): 70-2008......National Electrical Code H. Underwriters Laboratories, Inc. (UL): 1995-2005..... Heating and Cooling Equipment ## 1.6 SUBMITTALS - A. Submit in accordance with Specification Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES. - B. Manufacturer's Literature and Data. - 1. Rotary-screw water chillers, including water side economizer, motor starters, control panels, and vibration isolators, and condenser data shall include the following: - a. Rated capacity. - b. Pressure drop. - c. Efficiency at full load and part load WITHOUT applying any tolerance indicated in the AHRI 550/590/Standard. - d. Refrigerant - e. Fan performance (Air-Cooled Chillers only.) - f. economizer performance. - g. Accessories. - h. Installation instructions. - i. Start up procedures. - j. Wiring diagrams, including factor-installed and field-installed wiring. - k.
Sound/Noise data report. Manufacturer shall provide sound ratings. Noise warning labels shall be posted on equipment. - C. Maintenance and operating manuals for each piece of equipment in accordance with Section 01 00 00, GENERAL REQUIREMENTS. - D. Run test report for all chillers. - E. Product Certificate: Signed by chiller manufacturer certifying that chillers furnished comply with AHRI requirements. The test report shall include calibrated curves, calibration records, and data sheets for the instrumentation used in factory tests. ## PART 2 - PRODUCTS # 2.1 ROTARY-SCREW AIR-COOLED WATER CHILLERS - A. Basis of Design; - Johnson Controls (York) Model YVAA Air Cooled Screw Liquid Chillers with Variable Speed Drive, YVAA0178CNV, packaged with 12 fan economizer. - 2. Alternates require prior approval during the bid period. - B. General: Factory-assembled and-tested rotary-screw chillers, complete with evaporator, integral water side economizer, compressors, motor, starters, integral condenser, and controls mounted on a welded steel base. The chiller unit shall consist of two compressors minimum, but not more than eight, mounted on a single welded steel base. Where compressors are paralleled, not more than two shall be so connected and not less than two independent refrigerant circuits shall be provided. Chiller shall be capable of operating one of the following refrigerants: HCFC-134a or HCFC-410a. 23 64 00 - 3 - C. Performance: Provide the capacity as shown on the drawings. Part load and full load efficiency ratings of the chiller shall not exceed those shown on the drawings. - D. Applicable Standard: Chillers shall be rated and certified according to AHRI 550/590, and shall be stamped in compliance with AHRI certification. - E. Acoustics: Sound pressure levels shall not exceed the following specified levels at full load. The manufacturer shall provide sound treatment if required to comply with the specified maximum levels. Testing shall be in accordance with AHRI requirements. | | | | Overall | | | | | | | |-----------|-----|-----|---------|------|------|-----|-----|----|--------------| | <u>63</u> | 125 | 250 | 500 | 1000 | 2000 | 400 | 800 | 0 | <u>dB(A)</u> | | 67 | 67 | 67 | 68 | 65 | 60 | 56 | 52 | 70 | | - F. Compressor (Rotary-Screw Type): Positive-displacement oil injected type, direct drive, cast-iron casing, precision-machined for minimum clearance about periphery of rotors. Semi-hermetic twin screw compressors. Lubrication system shall provide oil at proper temperature to all moving parts. Capacity control shall be by means of variable speed compressor motor drives to modulate the capacity from 100 to 20 percent of full unit rated capacity (10% capacity of each compressor) without unstable compressor operation. VFD drives shall be controlled by chiller manufacturer proprietary controls. Compressors shall begin operation in unloaded condition. - G. Refrigerants Circuit: Each circuit shall contain include an expansion valve, refrigerant charging connections, hot-gas muffler, compressor suction and discharge shutoff valves, replaceable-core filter drier, sight glass with moisture indicator, liquid-line solenoid valve and insulated suction line. - H. Refrigerant and Oil: Sufficient volume of dehydrated refrigerant and lubricating oil shall be provided to permit maximum unit capacity operation before and during tests. Replace refrigerant charge lost during the warranty period, due to equipment failure, without cost to the Government. ## I. Condenser: 1. Air-cooled integral condenser as shown on the drawings and specified hereinafter. - 2. Integral Condenser: Condenser coils shall be microchannel type; parallel flow aluminum alloy tubes brazed as one piece to enhanced aluminum alloy fins. For corrosion protection, see Paragraph 2.7 below. Condenser coils shall be factory air tested at 2413 kPa (350 psig). Condenser fans shall be high efficiency, low noise propeller type, directly connected to motor shaft. Fans shall be statically and dynamically balanced, with wire safety guards. Condenser fan motors with permanently lubricated ball bearings and three-phase thermal overload protection. Condenser fan motors to include VFD fan control. Units shall have louvers factory mounted to prevent damage to coil surfaces. - J. Evaporator: 3 pass Shell and tube hybrid falling film design with seamless copper tubes roller expanded into tube sheets, individually replaceable. Designed, tested, and stamped in accordance with applicable portions of ASME Boiler and Pressure Vessel Code, Section VIII, for working pressure produced by the water system, but not less than 1035 kPa (150 psig). Refrigerant side working pressure shall comply with ASHRAE Standard 15. Shell shall be constructed of carbon steel. For the waterside of liquid cooler the performance shall be based on a water velocity not less than 1 m/s (3 fps) with a maximum water velocity of 3 m/s (10 fps) and a fouling factor 0.0000176 m² degrees C (0.0001 hr. sq. ft.) degrees F/Btu. Evaporator for packaged air-cooled chiller units designed for outdoor installation shall be protected against freeze-up in ambient temperature down to -30 degrees C (-20 degrees F) by a resistance heater cable under insulation with thermostat set to operate below 3 degrees C (37 degrees F) ambient. - K. Insulation: Evaporator, suction piping, compressor, and all other parts subject to condensation shall be insulated with 20 mm (0.75 inch) minimum thickness of flexible-elastomeric thermal insulation, complying with ASTM C534. - L. Refrigerant Receiver: Provide a liquid receiver for chiller units when system refrigerant charge exceeds 80 percent of condenser refrigerant volume. Liquid receivers shall be horizontal-type, designed, fitted, and rated in conformance with AHRI 495. Receiver shall be constructed and tested in conformance with Section VIII D1 of the ASME Boiler and Pressure Vessel Code. Each receiver shall have a storage capacity not less than 20 percent in excess of that required for fully charged system. Each receiver shall be equipped with inlet, outlet drop pipes, drain plug, purging valve, and relief devices as required by ASHRAE Standard 15. # M. Economizer (free cooling unit): - a. The chiller shall be equipped with an integral free-cooling package. The integral free-cooling package shall be completely contained within the air-cooled chiller system and shall include all controls and operating components. The controls shall automatically switch the chiller between refrigeration cooling and free-cooling in either the partial free-cooling or full free-cooling when ambient temperature allows. Partial free-cooling shall be achieved whenever the ambient temperature falls below the return water temperature of the chiller. In partial free-cooling mode, the unit shall utilize ambient air to pre-cool the incoming fluid, and the unit's variable speed compressors shall modulate capacity to achieve the leaving fluid temperature setpoint through the evaporator, thus consuming the least amount of energy possible. 100% free-cooling shall be achieved whenever the ambient temperature is 50° F. System shall be integral to the chiller package and no manual intervention shall be required. The free-cooling coils shall be individually removable without interrupting mechanical chiller operation for ease of maintenance. If welded pipe is utilized, unit manufacturer shall provide unit mounted service gantries and access platforms and ladders for piping removal and service. - b. All coils shall be less than 92" long and shall be individually removable for service or replacement by no more than (3) persons without gantries, cranes, or other rigging devices. - c. All free cooling piping shall be welded to conform to ASME 31.3 and preparation shall conform to ASME B16.25. All hydronic components shall pass an 8 hour 100 PSIG pneumatic pressure test, or a dye penetrant test shall be performed on all components prior to unit fabrication. Joints shall be flanged or grooved so that coils, spool pieces, elbows, tees and other components are easily removable for service, cleaning, and replacement. - d. The hydraulic glycol loop inside the chiller shall include a motorized 3-way valve for diverting return glycol to either the evaporator via a bypass line or the Free Cooling coils. - N. Controls: Chiller shall be furnished with unit mounted, stand-alone, microprocessor-based controls in NEMA 3R enclosure, hinged and lockable, factory wired with a single point power connection and separate control circuit. The control panel provides chiller operation, including monitoring of sensors and actuators, and shall be furnished with light emitting diodes or liquid-crystal display keypad. 23 64 00 - 6 - 1. Following shall display as a minimum on the panel: - a. Date and time. - b. Outdoor air temperature. - c. Operating and alarm status. - d. Entering and leaving water temperature-chilled water. - e. Operating set points-temperature and pressure. - f. Refrigerant temperature and pressure. - g. Operating hours in 10% increments of chiller output. - h. Number of starts. - i. Current limit set point. - j. Maximum motor amperage (percent). - 2. Control Functions: - a. Manual or automatic startup and shutdown time schedule. - b. Entering and leaving chilled water temperature and control set points. - c. Automatic lead-lag switch. - 3. Safety Functions: Following conditions shall shut down the chiller and require manual reset to start: - a. Loss of chilled water flow. - b. Low chilled water temperature. - c. Compressor motor current-overload protection. - d. Freeze protection (for air-cooled chillers). - e. Starter fault. - f. High or low oil pressure. - O. The chiller control panel shall provide leaving chilled water temperature reset based on outdoor air temperature . - P. Provide contacts for remote start/stop, alarm for abnormal operation or shutdown, and for Engineering Control Center (ECC). - Q. Chiller control panel
shall be provided with BACnet IP cards which shall be directly connected to the building IT Hub (room 5144) via an Ethernet Line. - R. Auxiliary hydronic system and the chiller(s) shall be interlocked to provide time delay and start sequencing. - S. Motor: Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC. Compressor motor furnished with the chiller shall be in accordance with the chiller manufacturer and the electrical specification Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC. Starting torque of motors shall be suitable for driven machines. 23 64 00 - 7 - T. Motor Starter: Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC. Provide a VFDs in NEMA 3R enclosures, unit mounted with chiller. See Section 26 29 11, MOTOR CONTROLLERS for additional requirements. - U. Single Point Power: - 1. Provide single point power connection to chiller. The power shall be 3 phase of scheduled voltage. - 2. Terminal Block connections shall be provided at the point of incoming single point connection for field connection and interconnecting wiring to the compressors. Separate external protection must be supplied, by others, in the incoming power wiring, which must comply with local codes. - a. Single Point Disconnect: A non-fused disconnect and lockable external handle shall be supplied to isolate the unit power voltage for servicing. Separate external fusing must be supplied, by others, in the incoming power wiring which must comply with local codes. ## V. Control Transformer: - 1. Power panel shall be supplied with a factory mounted and wired control transformer that will supply all unit control voltage from the main unit power supply. Transformer shall utilize scheduled line voltage on the primary side and provide 115V/10 on secondary. - W. Short Circuit Withstand Rating of the chiller electrical enclosure shall be (380, 400, & 460V: minimum of 30,000 Amps [OR 65,000 Amps for Single Point Circuit Breaker]). Rating shall be published in accordance with UL508. - X. Motor Starters: Motor starters shall be zero electrical inrush current (Variable Frequency Drives) or reduced inrush type (Closed transition Wye-Delta or Solid State) for minimum electrical inrush. Open transition Wye-Delta and Across the Line type starters will not be acceptable. # Y. Power Factor: - Provide equipment with power factor correction capacitors as required to maintain a displacement power factor of 95% at all load conditions. - 2. The installing contractor is responsible for additional cost to furnish and install power factor correction capacitors if they are not factory mounted and wired. - Z. All exposed power wiring shall be routed through liquid-tight, UV-stabilized, non-metallic conduit. AA. Supplied equipment shall not exceed scheduled Minimum Circuit Ampacity (MCA). The mechanical Contractor shall be responsible for any additional costs associated with equipment deviation. #### PART 3 - EXECUTION #### 3.1 EXAMINATION A. Examine roughing-in for concrete equipment bases, anchor-bolt sizes and locations, piping and electrical to verify actual locations and sizes before chiller installation and other conditions that might affect chiller performance, maintenance, and operation. Equipment locations shown on drawings are approximate. Determine exact locations before proceeding with installation. ## 3.2 EQUIPMENT INSTALLATION - A. Install chiller on concrete base with chiller manufacturer furnished isolation pads that account for the economizer. - 1. Concrete base is specified indicated on drawings. - Vibration isolator types and installation requirements are specified in Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT - 3. Anchor chiller to concrete base according to manufacturer's written instructions using manufacturer furnished elastomeric vibration isolators. Verify and confirm that isolators account for the unit operating weight including economizer. - 4. Charge the chiller with refrigerant, if not factory charged. - 5. Install accessories and any other equipment furnished loose by the manufacturer, including remote starter, remote control panel, and remote flow switches, according to the manufacturer written instructions and electrical requirements. - 6. Chillers shall be installed in a manner as to provide easy access for tube pull and removal of compressor and motors etc. - B. Install thermometers and gages as recommended by the manufacturer and/or as shown on drawings. ## C. Piping Connections: - Make piping connections to the chiller for chilled water, condenser water, and other connections as necessary for proper operation and maintenance of the equipment. - 2. Make equipment connections with flanges and couplings for easy removal and replacement of equipment from the equipment room. 3. Extend vent piping from the relief valves to provide at least 20 feet separation from adjacent building openings. #### D. Insulation: 1. Insulate chiller liquid nozzles, including vapor barrier and jacketing per specifications. ## 3.3 STARTUP AND TESTING - A. Engage manufacturer's factory-trained representative to perform startup and testing service. - B. Inspect, equipment installation, including field-assembled components, and piping and electrical connections. - C. After complete installation startup checks, according to the manufacturers written instructions, do the following to demonstrate to the VA that the equipment operate and perform as intended. - 1. Check refrigerant charge is sufficient and chiller has been tested for refrigerant leak. - 2. Check bearing lubrication and oil levels. - 3. Verify proper motor rotation. - 4. Verify pumps associated with chillers are installed and operational. - 5. Verify thermometers and gages are installed. - 6. Operate chiller for run-in-period in accordance with the manufacturer's instruction and observe its performance. - 7. Check and record refrigerant pressure, water flow, water temperature, and power consumption of the chiller. - 8. Test and adjust all controls and safeties. Replace or correct all malfunctioning controls, safeties and equipment as soon as possible to avoid any delay in the use of the equipment. - 9. Prepare a written report outlining the results of tests and inspections, and submit it to the VA. - D. Engage manufacturer's certified factory trained representative to provide training for 8 hours for the VA maintenance and operational personnel to adjust, operate and maintain equipment. - - - E N D - - - # SECTION 26 05 11 REQUIREMENTS FOR ELECTRICAL INSTALLATIONS # PART 1 - GENERAL ## 1.1 DESCRIPTION - A. This section applies to all sections of Division 26. - B. Furnish and install electrical systems, materials, equipment, and accessories in accordance with the specifications and drawings. Capacities and ratings of conduit and conductors, circuit breakers, equipment, and other items and arrangements for the specified items are shown on the drawings. - C. Conductor ampacities specified or shown on the drawings are based on copper conductors, with the conduit and raceways sized per NEC. Aluminum conductors are prohibited. ## 1.2 MINIMUM REQUIREMENTS - A. The International Building Code (IBC), National Electrical Code (NEC), Underwriters Laboratories, Inc. (UL), and National Fire Protection Association (NFPA) codes and standards are the minimum requirements for materials and installation. - B. The drawings and specifications shall govern in those instances where requirements are greater than those stated in the above codes and standards. ## 1.3 TEST STANDARDS A. All materials and equipment shall be listed, labeled, or certified by a Nationally Recognized Testing Laboratory (NRTL) to meet Underwriters Laboratories, Inc. (UL), standards where test standards have been established. Materials and equipment which are not covered by UL standards will be accepted, providing that materials and equipment are listed, labeled, certified or otherwise determined to meet the safety requirements of a NRTL. Materials and equipment which no NRTL accepts, certifies, lists, labels, or determines to be safe, will be considered if inspected or tested in accordance with national industrial standards, such as ANSI, NEMA, and NETA. Evidence of compliance shall include certified test reports and definitive shop drawings. ## B. Definitions: 1. Listed: Materials and equipment included in a list published by an organization that is acceptable to the Authority Having Jurisdiction and concerned with evaluation of products or services, that maintains periodic inspection of production or listed materials and equipment or periodic evaluation of services, and whose listing states that the materials and equipment either meets appropriate designated standards or has been tested and found suitable for a specified purpose. - 2. Labeled: Materials and equipment to which has been attached a label, symbol, or other identifying mark of an organization that is acceptable to the Authority Having Jurisdiction and concerned with product evaluation, that maintains periodic inspection of production of labeled materials and equipment, and by whose labeling the manufacturer indicates compliance with appropriate standards or performance in a specified manner. - 3. Certified: Materials and equipment which: - a. Have been tested and found by a NRTL to meet nationally recognized standards or to be safe for use in a specified manner. - b. Are periodically inspected by a NRTL. - c. Bear a label, tag, or other record of certification. - 4. Nationally Recognized Testing Laboratory: Testing laboratory which is recognized and approved by the Secretary of Labor in accordance with OSHA regulations. ## 1.4 QUALIFICATIONS (PRODUCTS AND SERVICES) - A. Manufacturer's Qualifications: The manufacturer shall regularly and currently produce, as one of the manufacturer's principal products, the materials and equipment specified for this project, and shall have manufactured the materials and equipment for at least three
years. - B. Product Qualification: - 1. Manufacturer's materials and equipment shall have been in satisfactory operation, on three installations of similar size and type as this project, for at least three years. - 2. The Government reserves the right to require the Contractor to submit a list of installations where the materials and equipment have been in operation before approval. - C. Service Qualifications: There shall be a permanent service organization maintained or trained by the manufacturer which will render satisfactory service to this installation within four hours of receipt of notification that service is needed. Submit name and address of service organizations. 26 05 11 - 2 #### 1.5 APPLICABLE PUBLICATIONS - A. Applicable publications listed in all Sections of Division 26 are the latest issue, unless otherwise noted. - B. Products specified in all sections of Division 26 shall comply with the applicable publications listed in each section. #### 1.6 MANUFACTURED PRODUCTS - A. Materials and equipment furnished shall be of current production by manufacturers regularly engaged in the manufacture of such items, and for which replacement parts shall be available. Materials and equipment furnished shall be new, and shall have superior quality and freshness. - B. When more than one unit of the same class or type of materials and equipment is required, such units shall be the product of a single manufacturer. - C. Equipment Assemblies and Components: - Components of an assembled unit need not be products of the same manufacturer. - Manufacturers of equipment assemblies, which include components made by others, shall assume complete responsibility for the final assembled unit. - 3. Components shall be compatible with each other and with the total assembly for the intended service. - 4. Constituent parts which are similar shall be the product of a single manufacturer. - D. Factory wiring and terminals shall be identified on the equipment being furnished and on all wiring diagrams. - E. When Factory Tests are specified, Factory Tests shall be performed in the factory by the equipment manufacturer, and witnessed by the contractor. In addition, the following requirements shall be complied with: - 1. The Government shall have the option of witnessing factory tests. The Contractor shall notify the Government through the Resident Engineer a minimum of thirty (30) days prior to the manufacturer's performing of the factory tests. - 2. When factory tests are successful, contractor shall furnish four (4) copies of the equipment manufacturer's certified test reports to the Resident Engineer fourteen (14) days prior to shipment of the - equipment, and not more than ninety (90) days after completion of the factory tests. - 3. When factory tests are not successful, factory tests shall be repeated in the factory by the equipment manufacturer, and witnessed by the Contractor. The Contractor shall be liable for all additional expenses for the Government to witness factory retesting. ## 1.7 VARIATIONS FROM CONTRACT REQUIREMENTS A. Where the Government or the Contractor requests variations from the contract requirements, the connecting work and related components shall include, but not be limited to additions or changes to branch circuits, circuit protective devices, conduits, wire, feeders, controls, panels and installation methods. ## 1.8 MATERIALS AND EQUIPMENT PROTECTION - A. Materials and equipment shall be protected during shipment and storage against physical damage, vermin, dirt, corrosive substances, fumes, moisture, cold and rain. - 1. Store materials and equipment indoors in clean dry space with uniform temperature to prevent condensation. - 2. During installation, equipment shall be protected against entry of foreign matter, and be vacuum-cleaned both inside and outside before testing and operating. Compressed air shall not be used to clean equipment. Remove loose packing and flammable materials from inside equipment. - 3. Damaged equipment shall be repaired or replaced, as determined by the Resident Engineer. - 4. Painted surfaces shall be protected with factory installed removable heavy kraft paper, sheet vinyl or equal. - 5. Damaged paint on equipment shall be refinished with the same quality of paint and workmanship as used by the manufacturer so repaired areas are not obvious. ## 1.9 WORK PERFORMANCE A. All electrical work shall comply with the requirements of NFPA 70 (NEC), NFPA 70B, NFPA 70E, OSHA Part 1910 subpart J - General Environmental Controls, OSHA Part 1910 subpart K - Medical and First Aid, and OSHA Part 1910 subpart S - Electrical, in addition to other references required by contract. - B. Job site safety and worker safety is the responsibility of the Contractor. - C. Electrical work shall be accomplished with all affected circuits or equipment de-energized. When an electrical outage cannot be accomplished in this manner for the required work, the following requirements are mandatory: - 1. Electricians must use full protective equipment (i.e., certified and tested insulating material to cover exposed energized electrical components, certified and tested insulated tools, etc.) while working on energized systems in accordance with NFPA 70E. - 2. Before initiating any work, a job specific work plan must be developed by the Contractor with a peer review conducted and documented by the Resident Engineer and Medical Center staff. The work plan must include procedures to be used on and near the live electrical equipment, barriers to be installed, safety equipment to be used, and exit pathways. - 3. Work on energized circuits or equipment cannot begin until prior written approval is obtained from the Resident Engineer. - D. For work that affects existing electrical systems, arrange, phase and perform work to assure minimal interference with normal functioning of the facility. Refer to Article OPERATIONS AND STORAGE AREAS under Section 01 00 00, GENERAL REQUIREMENTS. - E. New work shall be installed and connected to existing work neatly, safely and professionally. Disturbed or damaged work shall be replaced or repaired to its prior conditions, as required by Section 01 00 00, GENERAL REQUIREMENTS. - F. Coordinate location of equipment and conduit with other trades to minimize interference. ## 1.10 EQUIPMENT INSTALLATION AND REQUIREMENTS - A. Equipment location shall be as close as practical to locations shown on the drawings. - B. Working clearances shall not be less than specified in the NEC. - C. Inaccessible Equipment: - 1. Where the Government determines that the Contractor has installed equipment not readily accessible for operation and maintenance, the equipment shall be removed and reinstalled as directed at no additional cost to the Government. - 2. "Readily accessible" is defined as being capable of being reached quickly for operation, maintenance, or inspections without the use of ladders, or without climbing or crawling under or over obstacles such as, but not limited to, motors, pumps, belt guards, transformers, piping, ductwork, conduit and raceways. - D. Electrical service entrance equipment and arrangements for temporary and permanent connections to the electric utility company's system shall conform to the electric utility company's requirements. Coordinate fuses, circuit breakers and relays with the electric utility company's system, and obtain electric utility company approval for sizes and settings of these devices. ## 1.11 EQUIPMENT IDENTIFICATION - A. In addition to the requirements of the NEC, install an identification sign which clearly indicates information required for use and maintenance of items such as switchboards and switchgear, panelboards, cabinets, motor controllers, fused and non-fused safety switches, separately enclosed circuit breakers, individual breakers and controllers in switchboards, switchgear and motor control assemblies, control devices and other significant equipment. - B. Identification signs for Normal Power System equipment shall be laminated black phenolic resin with a white core with engraved lettering. Identification signs for Essential Electrical System (EES) equipment, as defined in the NEC, shall be laminated red phenolic resin with a white core with engraved lettering. Lettering shall be a minimum of 12 mm (1/2 inch) high. Identification signs shall indicate equipment designation, rated bus amperage, voltage, number of phases, number of wires, and type of EES power branch as applicable. Secure nameplates with screws. - C. Install adhesive arc flash warning labels on all equipment as required by NFPA 70E. Label shall show specific and correct information for specific equipment based on its arc flash calculations. Label shall show the followings: - 1. Nominal system voltage. - 2. Arc flash boundary (inches). - Available arc flash incident energy at the corresponding working distance (calories/cm2). - 4. Required PPE category and description. - 5. Limited approach distance (inches), restricted approach distance (inches). - 6. Equipment/bus name, date prepared, and manufacturer name and address. ## 1.12 SUBMITTALS - A. Submit to the Resident Engineer in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. - B. The Government's approval shall be obtained for all materials and equipment before delivery to the job site. Delivery, storage or installation of materials and equipment which has not had prior approval will not be permitted. - C. All submittals shall include six copies of adequate descriptive literature, catalog cuts, shop drawings, test reports, certifications, samples, and other data necessary for the Government to ascertain that the proposed materials and equipment comply with drawing and specification requirements. Catalog cuts submitted for approval shall be legible and clearly identify specific materials and equipment being submitted. - D. Submittals for individual systems and equipment assemblies which consist of
more than one item or component shall be made for the system or assembly as a whole. Partial submittals will not be considered for approval. - 1. Mark the submittals, "SUBMITTED UNDER SECTION______". - 2. Submittals shall be marked to show specification reference including the section and paragraph numbers. - 3. Submit each section separately. - E. The submittals shall include the following: - Information that confirms compliance with contract requirements. Include the manufacturer's name, model or catalog numbers, catalog information, technical data sheets, shop drawings, manuals, pictures, nameplate data, and test reports as required. - 2. Elementary and interconnection wiring diagrams for communication and signal systems, control systems, and equipment assemblies. All terminal points and wiring shall be identified on wiring diagrams. - 3. Parts list which shall include information for replacement parts and ordering instructions, as recommended by the equipment manufacturer. 26 05 11 - 7 - F. Maintenance and Operation Manuals: - 1. Submit as required for systems and equipment specified in the technical sections. Furnish in hardcover binders or an approved equivalent. - 2. Inscribe the following identification on the cover: the words "MAINTENANCE AND OPERATION MANUAL," the name and location of the system, material, equipment, building, name of Contractor, and contract name and number. Include in the manual the names, addresses, and telephone numbers of each subcontractor installing the system or equipment and the local representatives for the material or equipment. - 3. Provide a table of contents and assemble the manual to conform to the table of contents, with tab sheets placed before instructions covering the subject. The instructions shall be legible and easily read, with large sheets of drawings folded in. - 4. The manuals shall include: - a. Internal and interconnecting wiring and control diagrams with data to explain detailed operation and control of the equipment. - b. A control sequence describing start-up, operation, and shutdown. - c. Description of the function of each principal item of equipment. - d. Installation instructions. - e. Safety precautions for operation and maintenance. - f. Diagrams and illustrations. - g. Periodic maintenance and testing procedures and frequencies, including replacement parts numbers. - h. Performance data. - i. Pictorial "exploded" parts list with part numbers. Emphasis shall be placed on the use of special tools and instruments. The list shall indicate sources of supply, recommended spare and replacement parts, and name of servicing organization. - j. List of factory approved or qualified permanent servicing organizations for equipment repair and periodic testing and maintenance, including addresses and factory certification qualifications. - G. Approvals will be based on complete submission of shop drawings, manuals, test reports, certifications, and samples as applicable. 26 05 11 - 8 - H. After approval and prior to installation, furnish the Resident Engineer with one sample of each of the following: - 1. A minimum 300 mm (12 inches) length of each type and size of wire and cable along with the tag from the coils or reels from which the sample was taken. The length of the sample shall be sufficient to show all markings provided by the manufacturer. - 2. Each type of conduit coupling, bushing, and termination fitting. - 3. Conduit hangers, clamps, and supports. - 4. Duct sealing compound. - 5. Each type of receptacle, toggle switch, lighting control sensor, outlet box, manual motor starter, device wall plate, engraved nameplate, wire and cable splicing and terminating material, and branch circuit single pole molded case circuit breaker. ## 1.13 SINGULAR NUMBER A. Where any device or part of equipment is referred to in these specifications in the singular number (e.g., "the switch"), this reference shall be deemed to apply to as many such devices as are required to complete the installation as shown on the drawings. ## 1.14 ACCEPTANCE CHECKS AND TESTS - A. The Contractor shall furnish the instruments, materials, and labor for tests. - B. Where systems are comprised of components specified in more than one section of Division 26, the Contractor shall coordinate the installation, testing, and adjustment of all components between various manufacturer's representatives and technicians so that a complete, functional, and operational system is delivered to the Government. - C. When test results indicate any defects, the Contractor shall repair or replace the defective materials or equipment, and repeat the tests. Repair, replacement, and retesting shall be accomplished at no additional cost to the Government. ## 1.15 WARRANTY A. All work performed and all equipment and material furnished under this Division shall be free from defects and shall remain so for a period of one year from the date of acceptance of the entire installation by the Contracting Officer for the Government. VA Tomah Medical Center, WI Replace Chiller-Building 403 100% Bid Documents ## 1.16 INSTRUCTION - A. Instruction to designated Government personnel shall be provided for the particular equipment or system as required in each associated technical specification section. - B. Furnish the services of competent and factory-trained instructors to give full instruction in the adjustment, operation, and maintenance of the specified equipment and system, including pertinent safety requirements. Instructors shall be thoroughly familiar with all aspects of the installation, and shall be factory-trained in operating theory as well as practical operation and maintenance procedures. - C. A training schedule shall be developed and submitted by the Contractor and approved by the Resident Engineer at least 30 days prior to the planned training. PART 2 - PRODUCTS (NOT USED) PART 3 - EXECUTION (NOT USED) ---END--- ## SECTION 26 05 19 LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES ## PART 1 - GENERAL #### 1.1 DESCRIPTION A. This section specifies the furnishing, installation, connection, and testing of the electrical conductors and cables for use in electrical systems rated 600 V and below, indicated as cable(s), conductor(s), wire, or wiring in this section. #### 1.2 RELATED WORK - A. Section 07 84 00, FIRESTOPPING: Sealing around penetrations to maintain the integrity of fire-resistant rated construction. - B. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26. - C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents. - D. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits for conductors and cables. ## 1.3 QUALITY ASSURANCE A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS. ## 1.4 FACTORY TESTS A. Conductors and cables shall be thoroughly tested at the factory per NEMA to ensure that there are no electrical defects. Factory tests shall be certified. ## 1.5 SUBMITTALS - A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS. - 1. Shop Drawings: - a. Submit sufficient information to demonstrate compliance with drawings and specifications. - b. Submit the following data for approval: - 1) Electrical ratings and insulation type for each conductor and cable. - 2) Splicing materials and pulling lubricant. - 2. Certifications: Two weeks prior to final inspection, submit the following. - a. Certification by the manufacturer that the conductors and cables conform to the requirements of the drawings and specifications. - b. Certification by the Contractor that the conductors and cables have been properly installed, adjusted, and tested. ## 1.6 APPLICABLE PUBLICATIONS - A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are reference in the text by designation only. - B. American Society of Testing Material (ASTM): D2301-10.....Standard Specification for Vinyl Chloride Plastic Pressure-Sensitive Electrical Insulating Tape D2304-10......Test Method for Thermal Endurance of Rigid Electrical Insulating Materials D3005-10.....Low-Temperature Resistant Vinyl Chloride Plastic Pressure-Sensitive Electrical Insulating Tape C. National Electrical Manufacturers Association (NEMA): WC 70-09......Power Cables Rated 2000 Volts or Less for the Distribution of Electrical Energy D. National Fire Protection Association (NFPA): 70-11......National Electrical Code (NEC) E. Underwriters Laboratories, Inc. (UL): 467-07..... Grounding and Bonding Equipment 486A-486B-03......Wire Connectors 486C-04.....Splicing Wire Connectors 486D-05.....Sealed Wire Connector Systems 486E-09......Equipment Wiring Terminals for Use with Aluminum and/or Copper Conductors Branch Circuit Cables 514B-04......Conduit, Tubing, and Cable Fittings ## PART 2 - PRODUCTS ## 2.1 CONDUCTORS AND CABLES - A. Conductors and cables shall be in accordance with NEMA, UL, as specified herein, and as shown on the drawings. - B. All conductors shall be copper. - C. Single Conductor and Cable: - 1. No. 12 AWG: Minimum size, except where smaller sizes are specified herein or shown on the drawings. - 2. No. 8 AWG and larger: Stranded. - 3. No. 10 AWG and smaller: Solid; except shall be stranded for final connection to motors, transformers, and vibrating equipment. - 4. Insulation: THHN-THWN and XHHW-2. XHHW-2 shall be used for isolated power systems. ## D. Color Code: - 1. No. 10 AWG and smaller: Solid color insulation or solid color coating. - 2. No. 8 AWG and larger: Color-coded using one of the following methods: - a. Solid color insulation or solid color coating. - b. Stripes, bands, or hash marks of color specified. - c. Color
using 19 mm (0.75 inches) wide tape. - 4. For modifications and additions to existing wiring systems, color coding shall conform to the existing wiring system. - 5. Conductors shall be color-coded as follows: | 208/120 V | Phase | 480/277 V | | | |-----------------|----------------|---------------------|--|--| | Black | A | Brown | | | | Red | В | Orange | | | | Blue | С | Yellow | | | | White | Neutral | Gray * | | | | * or white with | colored (other | than green) tracer. | | | 6. Lighting circuit "switch legs", and 3-way and 4-way switch "traveling wires," shall have color coding that is unique and distinct (e.g., pink and purple) from the color coding indicated above. The unique color codes shall be solid and in accordance with the NEC. Coordinate color coding in the field with the Resident 26 05 19 - 3 Engineer. 7. Color code for isolated power system wiring shall be in accordance with the NEC. ## 2.2 SPLICES - A. Splices shall be in accordance with NEC and UL. - B. Above Ground Splices for No. 10 AWG and Smaller: - 1. Solderless, screw-on, reusable pressure cable type, with integral insulation, approved for copper and aluminum conductors. - 2. The integral insulator shall have a skirt to completely cover the stripped conductors. - 3. The number, size, and combination of conductors used with the connector, as listed on the manufacturer's packaging, shall be strictly followed. - C. Above Ground Splices for No. 8 AWG to No. 4/0 AWG: - Compression, hex screw, or bolt clamp-type of high conductivity and corrosion-resistant material, listed for use with copper and aluminum conductors. - 2. Insulate with materials approved for the particular use, location, voltage, and temperature. Insulation level shall be not less than the insulation level of the conductors being joined. - 3. Splice and insulation shall be product of the same manufacturer. - 4. All bolts, nuts, and washers used with splices shall be zinc-plated steel. - D. Above Ground Splices for 250 kcmil and Larger: - Long barrel "butt-splice" or "sleeve" type compression connectors, with minimum of two compression indents per wire, listed for use with copper and aluminum conductors. - 2. Insulate with materials approved for the particular use, location, voltage, and temperature. Insulation level shall be not less than the insulation level of the conductors being joined. - 3. Splice and insulation shall be product of the same manufacturer. - E. Plastic electrical insulating tape: Per ASTM D2304, flame-retardant, cold and weather resistant. ## 2.3 CONNECTORS AND TERMINATIONS A. Mechanical type of high conductivity and corrosion-resistant material, listed for use with copper and aluminum conductors. - B. Long barrel compression type of high conductivity and corrosion-resistant material, with minimum of two compression indents per wire, listed for use with copper and aluminum conductors. - C. All bolts, nuts, and washers used to connect connections and terminations to bus bars or other termination points shall be zincplated steel. ## 2.4 CONTROL WIRING - A. Unless otherwise specified elsewhere in these specifications, control wiring shall be as specified herein, except that the minimum size shall be not less than No. 14 AWG. - B. Control wiring shall be sized such that the voltage drop under in-rush conditions does not adversely affect operation of the controls. ## 2.5 WIRE LUBRICATING COMPOUND - A. Lubricating compound shall be suitable for the wire insulation and conduit, and shall not harden or become adhesive. - B. Shall not be used on conductors for isolated power systems. #### PART 3 - EXECUTION #### 3.1 GENERAL - A. Install conductors in accordance with the NEC, as specified, and as shown on the drawings. - B. Install all conductors in raceway systems. - C. Splice conductors only in outlet boxes, junction boxes, pullboxes, manholes, or handholes. - D. Conductors of different systems (e.g., 120 V and 277 V) shall not be installed in the same raceway. - E. Install cable supports for all vertical feeders in accordance with the NEC. Provide split wedge type which firmly clamps each individual cable and tightens due to cable weight. - F. In panelboards, cabinets, wireways, switches, enclosures, and equipment assemblies, neatly form, train, and tie the conductors with non-metallic ties. - G. For connections to motors, transformers, and vibrating equipment, stranded conductors shall be used only from the last fixed point of connection to the motors, transformers, or vibrating equipment. - H. Use expanding foam or non-hardening duct-seal to seal conduits entering a building, after installation of conductors. ## I. Conductor and Cable Pulling: - 1. Provide installation equipment that will prevent the cutting or abrasion of insulation during pulling. Use lubricants approved for the cable. - 2. Use nonmetallic pull ropes. - 3. Attach pull ropes by means of either woven basket grips or pulling eyes attached directly to the conductors. - 4. All conductors in a single conduit shall be pulled simultaneously. - 5. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values. - J. No more than three branch circuits shall be installed in any one conduit. - K. When stripping stranded conductors, use a tool that does not damage the conductor or remove conductor strands. #### 3.2 SPLICE AND TERMINATION INSTALLATION - A. Splices and terminations shall be mechanically and electrically secure, and tightened to manufacturer's published torque values using a torque screwdriver or wrench. - B. Where the Government determines that unsatisfactory splices or terminations have been installed, replace the splices or terminations at no additional cost to the Government. #### 3.3 CONDUCTOR IDENTIFICATION A. When using colored tape to identify phase, neutral, and ground conductors larger than No. 8 AWG, apply tape in half-overlapping turns for a minimum of 75 mm (3 inches) from terminal points, and in junction boxes, pullboxes, and manholes. Apply the last two laps of tape with no tension to prevent possible unwinding. Where cable markings are covered by tape, apply tags to cable, stating size and insulation type. ## 3.4 FEEDER CONDUCTOR IDENTIFICATION A. In each interior pullbox and each underground manhole and handhole, install brass tags on all feeder conductors to clearly designate their circuit identification and voltage. The tags shall be the embossed type, 40 mm (1-1/2 inches) in diameter and 40 mils thick. Attach tags with plastic ties. ## 3.5 EXISTING CONDUCTORS A. Unless specifically indicated on the plans, existing conductors shall not be reused. #### 3.6 CONTROL WIRING INSTALLATION - A. Unless otherwise specified in other sections, install control wiring and connect to equipment to perform the required functions as specified or as shown on the drawings. - B. Install a separate power supply circuit for each system, except where otherwise shown on the drawings. ## 3.7 CONTROL WIRING IDENTIFICATION - A. Install a permanent wire marker on each wire at each termination. - B. Identifying numbers and letters on the wire markers shall correspond to those on the wiring diagrams used for installing the systems. - C. Wire markers shall retain their markings after cleaning. - D. In each manhole and handhole, install embossed brass tags to identify the system served and function. ## 3.8 ACCEPTANCE CHECKS AND TESTS - A. Perform in accordance with the manufacturer's recommendations. In addition, include the following: - 1. Visual Inspection and Tests: Inspect physical condition. - 2. Electrical tests: - a. After installation but before connection to utilization devices, such as fixtures, motors, or appliances, test conductors phase-to-phase and phase-to-ground resistance with an insulation resistance tester. Existing conductors to be reused shall also be tested. - b. Applied voltage shall be 500 V DC for 300 V rated cable, and 1000 V DC for 600 V rated cable. Apply test for one minute or until reading is constant for 15 seconds, whichever is longer. Minimum insulation resistance values shall not be less than 25 megohms for 300 V rated cable and 100 megohms for 600 V rated cable. - c. Perform phase rotation test on all three-phase circuits. ---END--- ## SECTION 26 05 26 GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS ## PART 1 - GENERAL ## 1.1 DESCRIPTION - A. This section specifies the furnishing, installation, connection, and testing of grounding and bonding equipment, indicated as grounding equipment in this section. - B. "Grounding electrode system" refers to grounding electrode conductors and all electrodes required or allowed by NEC, as well as made, supplementary, and lightning protection system grounding electrodes. - C. The terms "connect" and "bond" are used interchangeably in this section and have the same meaning. ## 1.2 RELATED WORK - A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26. - B. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors. - C. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduit and boxes. ## 1.3 QUALITY ASSURANCE A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS. ## 1.4 SUBMITTALS - A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS. - 1. Shop Drawings: - a. Submit sufficient information to demonstrate compliance with drawings and specifications. - b. Submit plans showing the location of system grounding electrodes and connections, and the routing of aboveground and underground grounding electrode conductors. ## 2. Test Reports: a. Two weeks prior to the final inspection, submit ground resistance field test reports to the Resident Engineer. 26 05 26 - 1 ## 3. Certifications: a. Certification by the Contractor that the grounding equipment has been properly
installed and tested. ## 1.5 APPLICABLE PUBLICATIONS - A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only. - B. American Society for Testing and Materials (ASTM): | B1-07Standard | Specification | for | Hard-Drawn | Copper | |---------------|---------------|-----|------------|--------| | Wire | | | | | - B3-07.....Standard Specification for Soft or Annealed Copper Wire - B8-11.....Standard Specification for Concentric-Lay-Stranded Copper Conductors, Hard, Medium-Hard, or Soft - D. National Fire Protection Association (NFPA): | 70-11 | .National | Electrical | Code (1 | IEC) | |--------|------------|--------------|---------|------| | 70E-12 | .National | Electrical | Safety | Code | | 99-12 | .Health Ca | are Faciliti | les | | E. Underwriters Laboratories, Inc. (UL): | 44-10 | .Thermoset-Insulated Wires and Cables | |--------|---| | 83-08 | .Thermoplastic-Insulated Wires and Cables | | 467-07 | Grounding and Bonding Equipment | ## PART 2 - PRODUCTS #### 2.1 GROUNDING AND BONDING CONDUCTORS - A. Equipment grounding conductors shall be insulated stranded copper, except that sizes No. 10 AWG and smaller shall be solid copper. Insulation color shall be continuous green for all equipment grounding conductors, except that wire sizes No. 4 AWG and larger shall be identified per NEC. - B. Bonding conductors shall be bare stranded copper, except that sizes No.10 AWG and smaller shall be bare solid copper. Bonding conductors - shall be stranded for final connection to motors, transformers, and vibrating equipment. - C. Conductor sizes shall not be less than shown on the drawings, or not less than required by the NEC, whichever is greater. - D. Insulation: THHN-THWN and XHHW-2. XHHW-2 shall be used for isolated power systems. ## 2.2 GROUND CONNECTIONS #### A. Above Grade: - 1. Bonding Jumpers: Listed for use with aluminum and copper conductors. For wire sizes No. 8 AWG and larger, use compression-type connectors. For wire sizes smaller than No. 8 AWG, use mechanical type lugs. Connectors or lugs shall use zinc-plated steel bolts, nuts, and washers. Bolts shall be torqued to the values recommended by the manufacturer. - 2. Connection to Grounding Bus Bars: Listed for use with aluminum and copper conductors. Use mechanical type lugs, with zinc-plated steel bolts, nuts, and washers. Bolts shall be torqued to the values recommended by the manufacturer. ## 2.3 GROUND TERMINAL BLOCKS A. At any equipment mounting location (e.g., backboards and hinged cover enclosures) where rack-type ground bars cannot be mounted, provide mechanical type lugs, with zinc-plated steel bolts, nuts, and washers. Bolts shall be torqued to the values recommended by the manufacturer. ## PART 3 - EXECUTION ## 3.1 GENERAL - A. Install grounding equipment in accordance with the NEC, as shown on the drawings, and as specified herein. - B. Equipment Grounding: Metallic piping, building structural steel, electrical enclosures, raceways, junction boxes, outlet boxes, cabinets, machine frames, and other conductive items in close proximity with electrical circuits, shall be bonded and grounded. ## 3.2 RACEWAY - A. Conduit Systems: - 1. Ground all metallic conduit systems. All metallic conduit systems shall contain an equipment grounding conductor. - 2. Metallic conduit that only contains a grounding conductor, and is provided for its mechanical protection, shall be bonded to that conductor at the entrance and exit from the conduit. - 3. Metallic conduits which terminate without mechanical connection to an electrical equipment housing by means of locknut and bushings or adapters, shall be provided with grounding bushings. Connect bushings with an equipment grounding conductor to the equipment ground bus. - B. Feeders and Branch Circuits: Install equipment grounding conductors with all feeders, and power and lighting branch circuits. - C. Boxes, Cabinets, Enclosures, and Panelboards: - 1. Bond the equipment grounding conductor to each pullbox, junction box, outlet box, device box, cabinets, and other enclosures through which the conductor passes (except for special grounding systems for intensive care units and other critical units shown). - 2. Provide lugs in each box and enclosure for equipment grounding conductor termination. #### D. Wireway Systems: - Bond the metallic structures of wireway to provide electrical continuity throughout the wireway system, by connecting a No. 6 AWG bonding jumper at all intermediate metallic enclosures and across all section junctions. - 2. Install insulated No. 6 AWG bonding jumpers between the wireway system, bonded as required above, and the closest building ground at each end and approximately every 16 M (50 feet). - 3. Use insulated No. 6 AWG bonding jumpers to ground or bond metallic wireway at each end for all intermediate metallic enclosures and across all section junctions. - E. Receptacles shall not be grounded through their mounting screws. Ground receptacles with a jumper from the receptacle green ground terminal to the device box ground screw and a jumper to the branch circuit equipment grounding conductor. - F. Fixed electrical appliances and equipment shall be provided with a ground lug for termination of the equipment grounding conductor. ## 3.3 CORROSION INHIBITORS A. When making grounding and bonding connections, apply a corrosion inhibitor to all contact surfaces. Use corrosion inhibitor appropriate for protecting a connection between the metals used. ## 3.4 CONDUCTIVE PIPING - A. Bond all conductive piping systems, interior and exterior, to the grounding electrode system. Bonding connections shall be made as close as practical to the equipment ground bus. - B. In operating rooms and at intensive care and coronary care type beds, bond the medical gas piping and medical vacuum piping at the outlets directly to the patient ground bus. ## 3.5 GROUND RESISTANCE - A. Grounding system resistance to ground shall not exceed 5 ohms. Make any modifications or additions to the grounding electrode system necessary for compliance without additional cost to the Government. Final tests shall ensure that this requirement is met. - B. Grounding system resistance shall comply with the electric utility company ground resistance requirements. ## 3.6 ACCEPTANCE CHECKS AND TESTS A. Resistance of the grounding electrode system shall be measured using a four-terminal fall-of-potential method as defined in IEEE 81. Ground resistance measurements shall be made before the electrical distribution system is energized or connected to the electric utility company ground system, and shall be made in normally dry conditions not fewer than 48 hours after the last rainfall. ---END--- ## SECTION 26 05 33 RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS ## PART 1 - GENERAL ## 1.1 DESCRIPTION - A. This section specifies the furnishing, installation, and connection of conduit, fittings, and boxes, to form complete, coordinated, grounded raceway systems. Raceways are required for all wiring unless shown or specified otherwise. - B. Definitions: The term conduit, as used in this specification, shall mean any or all of the raceway types specified. ## 1.2 RELATED WORK - A. Section 07 84 00, FIRESTOPPING: Sealing around penetrations to maintain the integrity of fire rated construction. - B. Section 07 92 00, JOINT SEALANTS: Sealing around conduit penetrations through the building envelope to prevent moisture migration into the building. - C. Section 09 91 00, PAINTING: Identification and painting of conduit and other devices. - D. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements and items that are common to more than one section of Division 26. - E. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents. ## 1.3 QUALITY ASSURANCE Refer to Paragraph, QUALIFICATIONS, in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS. #### 1.4 SUBMITTALS - A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS. - 1. Shop Drawings: - a. Size and location of main feeders. - b. Size and location of panels and pull-boxes. - c. Layout of required conduit penetrations through structural elements. - d. Submit the following data for approval: - 1) Raceway types and sizes. - 2) Conduit bodies, connectors and fittings. - 3) Junction and pull boxes, types and sizes. - 2. Certifications: Two weeks prior to final inspection, submit the following: - a. Certification by the manufacturer that raceways, conduits, conduit bodies, connectors, fittings, junction and pull boxes, and all related equipment conform to the requirements of the drawings and specifications. - b. Certification by the Contractor that raceways, conduits, conduit bodies, connectors, fittings, junction and pull boxes, and all related equipment have been properly installed. ## 1.5 APPLICABLE PUBLICATIONS - A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only. 70-11......National Electrical Code (NEC) - D. Underwriters Laboratories, Inc. (UL): - 651A-11.....Type EB and A Rigid PVC Conduit and HDPE Conduit - 797-07..... Electrical Metallic Tubing Fittings | | 1242-06 | .Electrical Intermediate Metal Conduit - Steel | |----|---|--| | Ε. | . National Electrical Manufacturers Association (NEMA): | | | | TC-2-13 | .Electrical Polyvinyl Chloride (PVC) Tubing and | | | | Conduit | | | TC-3-13 | .PVC Fittings for Use with Rigid PVC Conduit and |
 | | Tubing | | | FB1-12 | .Fittings, Cast Metal Boxes and Conduit Bodies | | | | for Conduit, Electrical Metallic Tubing and | | | | Cable | | | FB2.10-13 | .Selection and Installation Guidelines for | | | | Fittings for use with Non-Flexible Conduit or | | | | Tubing (Rigid Metal Conduit, Intermediate | | | | Metallic Conduit, and Electrical Metallic | | | | Tubing) | | | FB2.20-12Selection and Installation Guidelines for | | | | | Fittings for use with Flexible Electrical | | | | Conduit and Cable | | F. | American Iron and Steel | Institute (AISI): | | | S100-2007 | North American Specification for the Design of | | | | Cold-Formed Steel Structural Members | ## PART 2 - PRODUCTS ## 2.1 MATERIAL A. Conduit Size: In accordance with the NEC, but not less than 13 mm (0.5-inch) unless otherwise shown. Where permitted by the NEC, 13 mm (0.5-inch) flexible conduit may be used for tap connections to recessed lighting fixtures. ## B. Conduit: - 1. Size: In accordance with the NEC, but not less than 13 mm (0.5-inch). - 2. Rigid Steel Conduit (RMC): Shall conform to UL 6 and ANSI C80.1. - 3. Rigid Intermediate Steel Conduit (IMC): Shall conform to UL 1242 and ANSI C80.6. - 4. Electrical Metallic Tubing (EMT): Shall conform to UL 797 and ANSI C80.3. Maximum size not to exceed 105 mm (4 inches) and shall be permitted only with cable rated 600 V or less. - 5. Flexible Metal Conduit: Shall conform to UL 1. - 6. Liquid-tight Flexible Metal Conduit: Shall conform to UL 360. ## C. Conduit Fittings: - 1. Rigid Steel and Intermediate Metallic Conduit Fittings: - a. Fittings shall meet the requirements of UL 514B and NEMA FB1. - b. Standard threaded couplings, locknuts, bushings, conduit bodies, and elbows: Only steel or malleable iron materials are acceptable. Integral retractable type IMC couplings are also acceptable. - c. Locknuts: Bonding type with sharp edges for digging into the metal wall of an enclosure. - d. Bushings: Metallic insulating type, consisting of an insulating insert, molded or locked into the metallic body of the fitting. Bushings made entirely of metal or nonmetallic material are not permitted. - e. Erickson (Union-Type) and Set Screw Type Couplings: Approved for use in concrete are permitted for use to complete a conduit run where conduit is installed in concrete. Use set screws of case-hardened steel with hex head and cup point to firmly seat in conduit wall for positive ground. Tightening of set screws with pliers is prohibited. - f. Sealing Fittings: Threaded cast iron type. Use continuous drain-type sealing fittings to prevent passage of water vapor. In concealed work, install fittings in flush steel boxes with blank cover plates having the same finishes as that of other electrical plates in the room. ## 2. Electrical Metallic Tubing Fittings: - a. Fittings and conduit bodies shall meet the requirements of UL 514B, ANSI C80.3, and NEMA FB1. - b. Only steel or malleable iron materials are acceptable. - c. Setscrew Couplings and Connectors: Use setscrews of casehardened steel with hex head and cup point, to firmly seat in wall of conduit for positive grounding. - d. Indent-type connectors or couplings are prohibited. - e. Die-cast or pressure-cast zinc-alloy fittings or fittings made of "pot metal" are prohibited. ## 3. Flexible Metal Conduit Fittings: a. Conform to UL 514B. Only steel or malleable iron materials are acceptable. - b. Clamp-type, with insulated throat. - 4. Liquid-tight Flexible Metal Conduit Fittings: - a. Fittings shall meet the requirements of UL 514B and NEMA FB1. - b. Only steel or malleable iron materials are acceptable. - c. Fittings must incorporate a threaded grounding cone, a steel or plastic compression ring, and a gland for tightening. Connectors shall have insulated throats. - 5. Expansion and Deflection Couplings: - a. Conform to UL 467 and UL 514B. - b. Accommodate a 19 mm (0.75-inch) deflection, expansion, or contraction in any direction, and allow 30 degree angular deflections. - c. Include internal flexible metal braid, sized to guarantee conduit ground continuity and a low-impedance path for fault currents, in accordance with UL 467 and the NEC tables for equipment grounding conductors. - d. Jacket: Flexible, corrosion-resistant, watertight, moisture and heat-resistant molded rubber material with stainless steel jacket clamps. #### D. Conduit Supports: - 1. Parts and Hardware: Zinc-coat or provide equivalent corrosion protection. - Individual Conduit Hangers: Designed for the purpose, having a pre-assembled closure bolt and nut, and provisions for receiving a hanger rod. - 3. Multiple Conduit (Trapeze) Hangers: Not less than 38 mm x 38 mm $(1.5 \times 1.5 \text{ inches})$, 12-gauge steel, cold-formed, lipped channels; with not less than 9 mm (0.375-inch) diameter steel hanger rods. - 4. Solid Masonry and Concrete Anchors: Self-drilling expansion shields, or machine bolt expansion. - E. Outlet, Junction, and Pull Boxes: - 1. UL-50 and UL-514A. - 2. Rustproof cast metal where required by the NEC or shown on drawings. - 3. Sheet Metal Boxes: Galvanized steel, except where shown on drawings. ## PART 3 - EXECUTION ## 3.1 PENETRATIONS - A. Cutting or Holes: - Cut holes in advance where they should be placed in the structural elements, such as ribs or beams. Obtain the approval of the Resident Engineer prior to drilling through structural elements. - 2. Cut holes through concrete and masonry in new and existing structures with a diamond core drill or concrete saw. Pneumatic hammers, impact electric, hand, or manual hammer-type drills are not allowed, except when permitted by the Resident Engineer where working space is limited. - B. Firestop: Where conduits, wireways, and other electrical raceways pass through fire partitions, fire walls, smoke partitions, or floors, install a fire stop that provides an effective barrier against the spread of fire, smoke and gases as specified in Section 07 84 00, - C. Waterproofing: At floor, exterior wall, and roof conduit penetrations, completely seal the gap around conduit to render it watertight, as specified in Section 07 92 00, JOINT SEALANTS. ## 3.2 INSTALLATION, GENERAL - A. In accordance with UL, NEC, NEMA, as shown on drawings, and as specified herein. - B. Raceway systems used for Essential Electrical Systems (EES) shall be entirely independent of other raceway systems. - C. Install conduit as follows: - 1. In complete mechanically and electrically continuous runs before pulling in cables or wires. - Unless otherwise indicated on the drawings or specified herein, installation of all conduits shall be concealed within finished walls, floors, and ceilings. - 3. Flattened, dented, or deformed conduit is not permitted. Remove and replace the damaged conduits with new conduits. - 4. Assure conduit installation does not encroach into the ceiling height head room, walkways, or doorways. - 5. Cut conduits square, ream, remove burrs, and draw up tight. - 6. Independently support conduit at 2.4 M (8 feet) on centers with specified materials and as shown on drawings. - 7. Do not use suspended ceilings, suspended ceiling supporting members, lighting fixtures, other conduits, cable tray, boxes, piping, or ducts to support conduits and conduit runs. - 8. Support within 300 mm (12 inches) of changes of direction, and within 300 mm (12 inches) of each enclosure to which connected. - 9. Close ends of empty conduits with plugs or caps at the rough-in stage until wires are pulled in, to prevent entry of debris. - 10. Conduit installations under fume and vent hoods are prohibited. - 11. Secure conduits to cabinets, junction boxes, pull-boxes, and outlet boxes with bonding type locknuts. For rigid steel and IMC conduit installations, provide a locknut on the inside of the enclosure, made up wrench tight. Do not make conduit connections to junction box covers. - 12. Conduit bodies shall only be used for changes in direction, and shall not contain splices. ## D. Conduit Bends: - 1. Make bends with standard conduit bending machines. - 2. Conduit hickey may be used for slight offsets and for straightening stubbed out conduits. - 3. Bending of conduits with a pipe tee or vise is prohibited. ## E. Layout and Homeruns: - Install conduit with wiring, including homeruns, as shown on drawings. - 2. Deviations: Make only where necessary to avoid interferences and only after drawings showing the proposed deviations have been submitted and approved by the Resident Engineer. ## 3.3 CONCEALED WORK INSTALLATION ## A. In Concrete: - 1. Conduit: Rigid steel, IMC, or EMT. Do not install EMT in concrete slabs that are in contact with soil, gravel, or vapor barriers. - 2. Align and run conduit in direct lines. - 3. Install conduit through concrete beams only: - a. Where shown on the structural drawings. - b. As approved by the Resident Engineer prior to construction, and after submittal of drawing showing location, size, and position of each penetration. - 4. Installation of conduit in concrete that is less than 75 mm (3 inches) thick is prohibited. - a. Conduit outside diameter larger than one-third of the slab thickness is prohibited. - b. Space between conduits in slabs: Approximately six conduit diameters apart, and one conduit diameter at conduit crossings. - c. Install conduits approximately in the center of the slab so that there will be a minimum of 19 mm (0.75-inch) of concrete around the conduits. - 5. Make couplings and connections watertight. Use thread compounds that are UL approved conductive type to ensure low resistance ground continuity through the conduits. Tightening setscrews with pliers is prohibited. ## 3.4 EXPOSED WORK INSTALLATION - A. Unless otherwise indicated on drawings, exposed conduit is only permitted in mechanical and electrical rooms. - B. Conduit for Conductors 600 V and Below: Rigid steel, IMC, or EMT. Mixing different types of conduits in the system is prohibited. - C. Align and run conduit parallel or perpendicular to the building
lines. - D. Install horizontal runs close to the ceiling or beams and secure with conduit straps. - E. Support horizontal or vertical runs at not over 2.4 M (8 feet) intervals. - F. Surface Metal Raceways: Use only where shown on drawings. - G. Painting: - 1. Paint exposed conduit as specified in Section 09 91 00, PAINTING. - 2. Paint all conduits containing cables rated over 600 V safety orange. Refer to Section 09 91 00, PAINTING for preparation, paint type, and exact color. In addition, paint legends, using 50 mm (2 inch) high black numerals and letters, showing the cable voltage rating. Provide legends where conduits pass through walls and floors and at maximum 6 M (20 feet) intervals in between. ## 3.5 HAZARDOUS LOCATIONS A. Use rigid steel conduit only. B. Install UL approved sealing fittings that prevent passage of explosive vapors in hazardous areas equipped with explosion-proof lighting fixtures, switches, and receptacles, as required by the NEC. ## 3.6 WET OR DAMP LOCATIONS - A. Use rigid steel or IMC conduits unless as shown on drawings. - B. Provide sealing fittings to prevent passage of water vapor where conduits pass from warm to cold locations, i.e., refrigerated spaces, constant-temperature rooms, air-conditioned spaces, building exterior walls, roofs, or similar spaces. - C. Use rigid steel or IMC conduit within 1.5 M (5 feet) of the exterior and below concrete building slabs in contact with soil, gravel, or vapor barriers, unless as shown on drawings. Conduit shall be half-lapped with 10 mil PVC tape before installation. After installation, completely recoat or retape any damaged areas of coating. - D. Conduits run on roof shall be supported with integral galvanized lipped steel channel, attached to UV-inhibited polycarbonate or polypropylene blocks every 2.4 M (8 feet) with 9 mm (3/8-inch) galvanized threaded rods, square washer and locknut. Conduits shall be attached to steel channel with conduit clamps. ## 3.7 MOTORS AND VIBRATING EQUIPMENT - A. Use flexible metal conduit for connections to motors, chillers, and other electrical equipment subject to movement, vibration, misalignment, cramped quarters, or noise transmission. - B. Use liquid-tight flexible metal conduit for installation in exterior locations, moisture or humidity laden atmosphere, corrosive atmosphere, water or spray wash-down operations, inside airstream of HVAC units, and locations subject to seepage or dripping of oil, grease, or water. - C. Provide a green equipment grounding conductor with flexible and liquidtight flexible metal conduit. #### 3.8 EXPANSION JOINTS - A. Conduits 75 mm (3 inch) and larger that are secured to the building structure on opposite sides of a building expansion joint require expansion and deflection couplings. Install the couplings in accordance with the manufacturer's recommendations. - B. Provide conduits smaller than 75 mm (3 inch) with junction boxes on both sides of the expansion joint. Connect flexible metal conduits to junction boxes with sufficient slack to produce a 125 mm (5 inch) vertical drop midway between the ends of the flexible metal conduit. Flexible metal conduit shall have a green insulated copper bonding jumper installed. In lieu of this flexible metal conduit, expansion and deflection couplings as specified above are acceptable. C. Install expansion and deflection couplings where shown. ## 3.9 CONDUIT SUPPORTS - A. Safe working load shall not exceed one-quarter of proof test load of fastening devices. - B. Use pipe straps or individual conduit hangers for supporting individual conduits. - C. Support multiple conduit runs with trapeze hangers. Use trapeze hangers that are designed to support a load equal to or greater than the sum of the weights of the conduits, wires, hanger itself, and an additional 90 kg (200 lbs). Attach each conduit with U-bolts or other approved fasteners. - D. Support conduit independently of junction boxes, pull-boxes, fixtures, suspended ceiling T-bars, angle supports, and similar items. - E. Fasteners and Supports in Solid Masonry and Concrete: - 1. New Construction: Use steel or malleable iron concrete inserts set in place prior to placing the concrete. - 2. Existing Construction: - a. Steel expansion anchors not less than 6 mm (0.25-inch) bolt size and not less than 28 mm $(1.125\ inch)$ in embedment. - b. Power set fasteners not less than 6 mm (0.25-inch) diameter with depth of penetration not less than 75 mm (3 inch). - c. Use vibration and shock-resistant anchors and fasteners for attaching to concrete ceilings. - F. Hollow Masonry: Toggle bolts. - G. Bolts supported only by plaster or gypsum wallboard are not acceptable. - H. Metal Structures: Use machine screw fasteners or other devices specifically designed and approved for the application. - I. Attachment by wood plugs, rawl plug, plastic, lead or soft metal anchors, or wood blocking and bolts supported only by plaster is prohibited. - J. Chain, wire, or perforated strap shall not be used to support or fasten conduit. - K. Spring steel type supports or fasteners are prohibited for all uses except horizontal and vertical supports/fasteners within walls. - L. Vertical Supports: Vertical conduit runs shall have riser clamps and supports in accordance with the NEC and as shown. Provide supports for cable and wire with fittings that include internal wedges and retaining collars. ## 3.10 BOX INSTALLATION - A. Boxes for Concealed Conduits: - 1. Flush-mounted. - 2. Provide raised covers for boxes to suit the wall or ceiling, construction, and finish. - B. In addition to boxes shown, install additional boxes where needed to prevent damage to cables and wires during pulling-in operations or where more than the equivalent of 4-90 degree bends are necessary. - C. Locate pullboxes so that covers are accessible and easily removed. Coordinate locations with piping and ductwork where installed above ceilings. - D. Remove only knockouts as required. Plug unused openings. Use threaded plugs for cast metal boxes and snap-in metal covers for sheet metal boxes. - E. Outlet boxes mounted back-to-back in the same wall are prohibited. A minimum 600 mm (24 inch) center-to-center lateral spacing shall be maintained between boxes. - F. Flush-mounted wall or ceiling boxes shall be installed with raised covers so that the front face of raised cover is flush with the wall. Surface-mounted wall or ceiling boxes shall be installed with surface-style flat or raised covers. - G. Minimum size of outlet boxes for ground fault circuit interrupter (GFCI) receptacles is 100 mm (4 inches) square x 55 mm (2.125 inches) deep, with device covers for the wall material and thickness involved. - H. Stencil or install phenolic nameplates on covers of the boxes identified on riser diagrams; for example "SIG-FA JB No. 1." - I. On all branch circuit junction box covers, identify the circuits with black marker. - - - E N D - - ## SECTION 26 27 26 WIRING DEVICES ## PART 1 - GENERAL ## 1.1 DESCRIPTION A. This section specifies the furnishing, installation, connection, and testing of wiring devices. #### 1.2 RELATED WORK - A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements that are common to more than one section of Division 26. - B. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduit and boxes. - C. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Cables and wiring. - D. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path to ground for possible ground fault currents. ## 1.3 QUALITY ASSURANCE A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS. ## 1.4 SUBMITTALS - A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS. - 1. Shop Drawings: - a. Submit sufficient information to demonstrate compliance with drawings and specifications. - b. Include electrical ratings, dimensions, mounting details, construction materials, grade, and termination information. ## 2. Manuals: - a. Submit, simultaneously with the shop drawings, companion copies of complete maintenance and operating manuals, including technical data sheets and information for ordering replacement parts. - b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection. - 3. Certifications: Two weeks prior to final inspection, submit the following. - a. Certification by the manufacturer that the wiring devices conform to the requirements of the drawings and specifications. - b. Certification by the Contractor that the wiring devices have been properly installed and adjusted. ## 1.5 APPLICABLE PUBLICATIONS - A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by basic designation only. - B. National Fire Protection Association (NFPA): 70-11.....National Electrical Code (NEC) - 99-12.....Health Care Facilities - C. National Electrical Manufacturers Association (NEMA): - WD 1-10......General Color Requirements for Wiring Devices WD 6-08Wiring Devices Dimensional Specifications - D. Underwriter's Laboratories, Inc. (UL): - 467-07......Grounding and Bonding Equipment - 498-07.....Attachment Plugs and Receptacles - 943-11.....Ground-Fault Circuit-Interrupters ## PART 2 - PRODUCTS ## 2.1 RECEPTACLES - A. General: All receptacles shall comply with NEMA, NFPA, UL, and as shown on the drawings. - 1. Mounting straps shall be plated steel, with break-off plaster ears and shall include a self-grounding feature. Terminal screws shall be brass, brass plated or a copper alloy metal. - 2. Receptacles shall have provisions for back wiring with
separate metal clamp type terminals (four minimum) and side wiring from four captively held binding screws. - B. Duplex Receptacles: Hospital-grade, single phase, 20 ampere, 120 volts, 2-pole, 3-wire, NEMA 5-20R, with break-off feature for two-circuit operation. - 1. Bodies shall be ivory in color. - 2. Ground Fault Interrupter Duplex Receptacles: Shall be an integral unit, hospital-grade, suitable for mounting in a standard outlet box, with end-of-life indication and provisions to isolate the face due to improper wiring. - a. Ground fault interrupter shall be consist of a differential current transformer, solid state sensing circuitry and a circuit interrupter switch. Device shall have nominal sensitivity to ground leakage current of 4-6 milliamperes and shall function to interrupt the current supply for any value of ground leakage current above five milliamperes (+ or 1 milliampere) on the load side of the device. Device shall have a minimum nominal tripping time of 0.025 second. - b. Ground Fault Interrupter Duplex Receptacles (not hospital-grade) shall be the same as ground fault interrupter hospital-grade receptacles except for the hospital-grade listing. - C. Weatherproof Receptacles: Shall consist of a duplex receptacle, mounted in box with a gasketed, weatherproof, cast metal cover plate and cap over each receptacle opening. The cap shall be permanently attached to the cover plate by a spring-hinged flap. The weatherproof integrity shall not be affected when heavy duty specification or hospital grade attachment plug caps are inserted. Cover plates on outlet boxes mounted flush in the wall shall be gasketed to the wall in a watertight manner. NEMA 3R While In-Use. ## PART 3 - EXECUTION ## 3.1 INSTALLATION - A. Installation shall be in accordance with the NEC and as shown as on the drawings. - B. Install wiring devices after wall construction and painting is complete. - C. The ground terminal of each wiring device shall be bonded to the outlet box with an approved green bonding jumper, and also connected to the branch circuit equipment grounding conductor. - D. Provide barriers in multigang outlet boxes to comply with the NEC. - E. Coordinate the electrical work with the work of other trades to ensure that wiring device flush outlets are positioned with box openings aligned with the face of the surrounding finish material. Pay special attention - to installations in cabinet work, and in connection with laboratory equipment. - F. Exact field locations of floors, walls, partitions, doors, windows, and equipment may vary from locations shown on the drawings. Prior to locating sleeves, boxes and chases for roughing-in of conduit and equipment, the Contractor shall coordinate exact field location of the above items with other trades. - G. Install vertically mounted receptacles with the ground pin up. Install horizontally mounted receptacles with the ground pin to the right. - H. When required or recommended by the manufacturer, use a torque screwdriver. Tighten unused terminal screws. - I. Label device plates with a permanent adhesive label listing panel and circuit feeding the wiring device. ## 3.2 ACCEPTANCE CHECKS AND TESTS - A. Perform manufacturer's required field checks in accordance with the manufacturer's recommendations. In addition, include the following: - 1. Visual Inspection and Tests: - a. Inspect physical and electrical condition. - b. Test wiring devices for damaged conductors, high circuit resistance, poor connections, inadequate fault current path, defective devices, or similar problems using a portable receptacle tester. Correct circuit conditions, remove malfunctioning units and replace with new, and retest as specified above. - c. Test GFCI receptacles. ---END--- ## SECTION 26 29 21 ENCLOSED SWITCHES AND CIRCUIT BREAKERS ## PART 1 - GENERAL #### 1.1 DESCRIPTION A. This section specifies the furnishing, installation, and connection of unfused disconnect switches for use in electrical systems rated 600 $\rm V$ and below. #### 1.2 RELATED WORK - A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26. - B. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors. - C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground faults. - D. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits. #### 1.3 QUALITY ASSURANCE A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS. ## 1.4 SUBMITTALS - A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS. - 1. Shop Drawings: - a. Submit sufficient information to demonstrate compliance with drawings and specifications. - b. Submit the following data for approval: - Electrical ratings, dimensions, mounting details, materials, required clearances, terminations, weight, fuses, circuit breakers, wiring and connection diagrams, accessories, and device nameplate data. #### 2. Manuals: - a. Submit complete maintenance and operating manuals including technical data sheets, wiring diagrams, and information for ordering fuses, circuit breakers, and replacement parts. - Include schematic diagrams, with all terminals identified, matching terminal identification in the enclosed switches and circuit breakers. - Include information for testing, repair, troubleshooting, assembly, and disassembly. - b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection. - 3. Certifications: Two weeks prior to final inspection, submit the following. - a. Certification by the manufacturer that the enclosed switches and circuit breakers conform to the requirements of the drawings and specifications. - b. Certification by the Contractor that the enclosed switches and circuit breakers have been properly installed, adjusted, and tested. ## 1.5 APPLICABLE PUBLICATIONS - A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only. - B. International Code Council (ICC): - IBC-12.....International Building Code - C. National Electrical Manufacturers Association (NEMA): KS 1-06......Enclosed and Miscellaneous Distribution Equipment Switches (600 Volts Maximum) - D. National Fire Protection Association (NFPA): - 70-11.....National Electrical Code (NEC) - E. Underwriters Laboratories, Inc. (UL): - 98-07.....Enclosed and Dead-Front Switches ## PART 2 - PRODUCTS ## 2.1 UNFUSED SWITCHES RATED 600 AMPERES AND LESS - A. Switches shall be in accordance with NEMA, NEC, UL, as specified, and as shown on the drawings. - B. Shall be NEMA classified Heavy Duty (HD) for 480 V switches. - C. Shall be horsepower (HP) rated. - D. Shall have the following features: - 1. Switch mechanism shall be the quick-make, quick-break type. - 2. Copper blades, visible in the open position. - 3. An arc chute for each pole. - 4. External operating handle shall indicate open and closed positions, and have lock-open padlocking provisions. - 5. Mechanical interlock shall permit opening of the door only when the switch is in the open position, defeatable to permit inspection. - 6. Ground lugs for each ground conductor. - 7. Enclosures: - a. Shall be the NEMA types shown on the drawings. - b. Where the types of switch enclosures are not shown, they shall be the NEMA types most suitable for the ambient environmental conditions. - c. Shall be finished with manufacturer's standard gray baked enamel paint over pretreated steel. ## PART 3 - EXECUTION ## 3.1 INSTALLATION A. Installation shall be in accordance with the manufacturer's instructions, the NEC, as shown on the drawings, and as specified. #### 3.2 ACCEPTANCE CHECKS AND TESTS - A. Perform in accordance with the manufacturer's recommendations. In addition, include the following: - 1. Visual Inspection and Tests: - a. Compare equipment nameplate data with specifications and approved shop drawings. - b. Inspect physical, electrical, and mechanical condition. - c. Verify tightness of accessible bolted electrical connections by calibrated torque-wrench method. - d. Vacuum-clean enclosure interior. Clean enclosure exterior. ---END--- ## SECTION 32 31 13 CHAIN LINK FENCES AND GATES ## PART 1 - GENERAL ## 1.1 DESCRIPTION This work consists of all labor, materials, and equipment necessary for furnishing and installing chain link fence, gates and accessories in conformance with the lines, grades, and details as shown. ## 1.2 RELATED WORK A. Section 32 90 00, PLANTING. ## 1.3 MANUFACTURER'S QUALIFICATIONS Fence, gates, and accessories shall be products of manufacturers' regularly engaged in manufacturing items of type specified. #### 1.4 SUBMITTALS - A. In accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES, furnish the following: - 1. Manufacturer's Literature and Data: Chain link fencing, gates and all accessories. - 2. Manufacturer's Certificates: Zinc-coating complies with complies with specifications. ## 1.5 APPLICABLE PUBLICATIONS - A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. - B. American Society for Testing and Materials (ASTM): | A392-07Zinc-Coated Steel Chain-Link Fence Fabric | |---| | A817-07Metal-Coated Steel Wire for Chain-Link Fence | | Fabric and Marcelled Tension Wire | | C94/C94M-07Ready-Mixed Concrete | | F567-07Installation of Chain-Link Fence | | F626-(R2003)Fence Fittings | | F900-05Industrial and Commercial Swing Gates | | F1043-06Strength and Protective
Coatings on Metal | | Industrial Chain-Link Fence Framework | (Galvanized) Welded, for Fence Structures. F1083-08.....Pipe, Steel, Hot-Dipped Zinc-Coated # C. Federal Specifications (Fed. Spec.): FF-P-110J............Padlock, Changeable Combination ## PART 2 - PRODUCTS #### 2.1 GENERAL Materials shall conform to ASTM F1083 and ASTM A392 ferrous metals, zinc-coated; and detailed specifications forming the various parts thereto; and other requirements specified herein. Zinc-coat metal members (including fabric, gates, posts, rails, hardware and other ferrous metal items) after fabrication shall be reasonably free of excessive roughness, blisters and sal-ammoniac spots. ## 2.2 CHAIN-LINK FABRIC ASTM A392 9 gauge wire woven in a 50 mm (2 inch) mesh. Top and bottom selvage shall have twisted and knuckled. Zinc-coating weight shall be 570 grams/m^2 (2.0 ounces per square foot). ## 2.3 POST, FOR GATES AND FENCING ASTM F1083, Grade SK-40A, round, zinc-coated steel. Dimensions and weights of posts shall conform to the tables in the ASTM Specification. Provide post braces and truss rods for each gate, corner, pull or end post. Provide truss rods with turnbuckles or other equivalent provisions for adjustment. ## 2.4 TOP RAIL ASTM F1083, Grade SK-40A, round, zinc-coated steel. Dimensions and weights of rails shall conform to the tables in the ASTM Specification; fitted with suitable expansion sleeves and means for securing rail to each gate, corner, and end posts. ## 2.5 BOTTOM TENSION WIRE ASTM A817 and ASTM F626, zinc-coated, having minimum coating the same as the fence fabric. #### 2.6 ACCESSORIES Accessories as necessary caps, rail and brace ends, wire ties or clips, braces and tension bands, tension bars, truss rods, and miscellaneous accessories conforming to ASTM F626 ## 2.7 GATES ASTM F900, type as shown. Gate framing, bracing, latches, and other hardware zinc-coating weight shall be the same as the FABRIC. Gate leaves more than 2400 mm (8 feet) wide shall have either intermediate members and diagonal truss rods, or shall have tubular members as necessary to provide rigid construction, free from sag or twist. Gates less than 2400 mm (8 feet) wide shall have truss rods or intermediate braces. Attach gate fabric to the gate frame by method standard with the manufacturer, except that welding will not be permitted. Arrange latches for padlocking so that padlock will be accessible from both sides of the gate regardless of the latching arrangement. #### 2.8 GATE HARDWARE - A. Manufacturer's standard products, installed complete. The type of hinges shall allow gates to swing through 180 degrees, from closed to open position. Hang and secure gates in such a manner that, when locked, they cannot be lifted off hinges. - D. Equip gate openings with padlock conforming to Fed Spec FF-P-110H, Type EPC, size 50 mm (2 inch). Padlocks shall have chains that are securely attached to the gate or gate post. Before padlocks are delivered to project, submit sample to Resident Engineer for approval. Approved sample may be incorporated in work. Key padlock as directed by the Resident Engineer. ## 2.9 CONCRETE ASTM C94/C94M, using 19 mm (3/4 inch) maximum-size aggregate, and having minimum compressive strength of 25 mPa (3000 psig) at 28 days. Non-shrinking grout shall consist of one part Portland cement to three parts clean, well-graded sand, non-shrinking grout additive and the minimum amount of water to produce a workable mix. ## PART 3 - EXECUTION #### 3.1 INSTALLATION A. Install fence by properly trained crew, on previously prepared surfaces, to line and grade as shown. Install fence in accordance with ASTM F567 and with the manufacturer's printed installation instructions, except as modified herein or as shown. Maintain all equipment, tools, and machinery while on the project in sufficient quantities and capacities for proper installation of posts, chain links and accessories. 32 31 13-3 B. A Registered Professional Land Surveyor or Registered Civil Engineer specified in Section 01 00 00, GENERAL REQUIREMENTS, shall stake out and certify the fence alignment to meet the requirements as shown. ## 3.2 EXCAVATION Excavation for concrete-embedded items shall be of the dimensions shown, except in bedrock. If bedrock is encountered before reaching the required depth, continue the excavation to the depth shown or 450 mm (18 inches) into the bedrock, whichever is less, and provide a minimum of 50 mm (2 inches) larger diameter than the outside diameter of the post. Clear loose material from post holes. Grade area around finished concrete footings as shown and dispose of excess earth as directed by the Resident Engineer. ## 3.3 POST SETTING Install posts plumb and in alignment. Set corner posts in concrete footings of dimensions as shown, except in bedrock. Thoroughly compact concrete so as it to be free of voids and finished in a slope or dome to divert water running down the post away from the footing. Straight runs between braced posts shall not exceed 150 m (500 feet). Install posts in bedrock with a minimum of 25 mm (one inch) of non-shrinking grout around each post. Thoroughly work non-shrinking grout into the hole so as to be free of voids and finished in a slope or dome. Cure concrete and grout a minimum of 72 hours before any further work is done on the posts. ## 3.4 POST CAPS Fit all exposed ends of post with caps. Provide caps that fit snugly and are weathertight. Where top rail is used, provide caps to accommodate the top rail. Install post caps as recommended by the manufacturer and as shown. ## 3.5 SUPPORTING ARMS Design supporting arms, when required, to be weathertight. Where top rail is used, provide arms to accommodate the top rail. Install supporting arms as recommended by the manufacturer and as shown. ## 3.6 TOP RAILS Install rails before installing chain link fabric. Provide suitable means for securing rail ends to terminal and intermediate post. Top rails shall pass through intermediate post supporting arms or caps as shown. The rails shall have expansion couplings (rail sleeves) spaced as recommended by the manufacturer. Where fence is located on top of a wall, install expansion couplings over expansion joints in wall. ## 3.7 BOTTOM TENSION WIRE Install and pull taut tension wire before installing the chain-link fabric. ## 3.8 ACCESSORIES Supply accessories (posts braces, tension bands, tension bars, truss rods, and miscellaneous accessories), as required and recommended by the manufacturer, to accommodate the installation of a complete fence, with fabric that is taut and attached properly to posts, rails, and tension wire. ## 3.9 FABRIC Pull fabric taut and secured with wire ties or clips to the top rail and tension wire close to both sides of each post and at intervals of not more than 600 mm (24 inches) on centers. Secure fabric to posts using stretcher bars and ties or clips. #### 3.10 GATES Install gates plumb, level, and secure for full opening without interference. Adjust hardware for smooth operation and lubricate where necessary. ## 3.11 REPAIR OF GALVANIZED SURFACES Use galvanized repair compound, stick form, or other method, where galvanized surfaces need field or shop repair. Repair surfaces in accordance with the manufacturer's printed directions. ## 3.12 FINAL CLEAN-UP Remove all debris, rubbish and excess material from the VA Property. - - - E N D - - - 32 31 13-5